还是POJ_2762,前段时间用Kosaraju算法解决掉了,不过解决强连通分量的线性时间复杂度的算法还有两个,Tarjan,Gabow,今天把Tarjan看了下,感觉基本思想还是不难的,实现起来也算容易,不过我还不能证明其正确性。
Tarjan算法的基本思路就是,利用DFS去求强连通分量,具体步骤如下:
1.任意选取一个顶点做为DFS的起始位置,进行DFS。
2.在每次DFS中,先把discoverTime[now_node],和lowlink[now_node]赋值为当前搜索时间,并把当前结点压入栈内,然后查看当前结点的所有后继结点,如果其后继结点尚未访问,则继续DFS下去,并且lowlink[now_node] = min(lowlink[now_node],lowlink[当前结点的后继]).否则就检查该后继结点是否还在栈中,如果是的话则有 lowlink[now_node] = min(lowlink[now_node],discoverTime[该后继结点]);
说明:lowlink[u]表示包括u结点及其所有后继结点中最早被发现的时间,discoverTime[u]表示u结点的被发现时间.
3.查看lowlink[now_node]是否等于discoverTime[now_node],如果是,则说明该结点是一个强连通分量的根,则把栈中的元素弹出,直到弹出的元素是now_node为止。至此就求出了一个SCC。
4.如果图中尚有未被访问的结点,那么就以这些结点中的任意一个作为起始位置,再次进行DFS,回到步骤二,直到所有结点都被访问过。至此,图的所有SCC都被求出.
伪代码如下:
algorithm tarjan is
input: graph G = (V, E)
output: set of strongly connected components (sets of vertices)
index := 0
S := empty
for each v in V do
if (v.index is undefined) then
strongconnect(v)
end if
repeat
function strongconnect(v)
// Set the depth index for v to the smallest unused index
v.index := index
v.lowlink := index
index := index + 1
S.push(v)
// Consider successors of v
for each (v, w) in E do
if (w.index is undefined) then
// Successor w has not yet been visited; recurse on it
strongconnect(w)
v.lowlink := min(v.lowlink, w.lowlink)
else if (w is in S) then
// Successor w is in stack S and hence in the current SCC
v.lowlink := min(v.lowlink, w.index)
end if
repeat
// If v is a root node, pop the stack and generate an SCC
if (v.lowlink = v.index) then
start a new strongly connected component
repeat
w := S.pop()
add w to current strongly connected component
until (w = v)
output the current strongly connected component
end if
end function
POJ_2762_Tarjan实现代码如下:
#include<iostream>
#include<vector>
#include<stack>
#include<cstdio>
#include<cstring>
using namespace std;
const int MAXN = 1001;
vector<int> g[MAXN];//adjlist
stack<int> S;
int vis[MAXN],store[MAXN],scc[MAXN][MAXN],scccnt,DFN[MAXN],LOW[MAXN],belong[MAXN],deg[MAXN];
#define MIN(a,b) a>b?b:a
void addEdge(int u,int v)
{
g[u].push_back(v);
}
void init()
{
for(int i=0;i<MAXN;i++)g[i].clear();
while(!S.empty())S.pop();
memset(vis,0,sizeof(vis));
memset(store,0,sizeof(store));
memset(scc,0,sizeof(scc));
scccnt = 0;
}
void tarjan(int u,int n,int &time)
{
DFN[u] = LOW[u] = time++;
S.push(u);
vis[u] = 1;store[u] = 1;
for(int i=0;i<g[u].size();i++)
{
if(!vis[g[u][i]])//not visited
{
tarjan(g[u][i],n,time);
LOW[u] = MIN(LOW[u],LOW[g[u][i]]);
}
else if(store[g[u][i]])//in the stack
{
LOW[u] = MIN(LOW[u],DFN[g[u][i]]);
}
}
if(LOW[u]==DFN[u])
{
int v;
do
{
v = S.top();
S.pop();
store[v] = 0;//out from the stack
belong[v] = scccnt;
}while(v!=u);
scccnt++;
}
}
void make_SCCG(int n)
{
for(int i=1;i<=n;i++)
{
for(int j=0;j<g[i].size();j++)
{
if(belong[i]!=belong[g[i][j]])
{
scc[belong[i]][belong[g[i][j]]]=1;
}
}
}
}
bool calldfs2(int n)
{
memset(vis,0,sizeof(vis));
make_SCCG(n);
memset(vis,0,sizeof(vis));
memset(deg,0,sizeof(deg));
for(int i=0;i<scccnt;i++)
{
for(int j=0;j<scccnt;j++)
{
if(scc[j][i])deg[i]++;
}
}
int u,cnt;
for(int i=0;i<scccnt;i++)
{
cnt = 0;
for(int j=0;j<scccnt;j++)
{
if(deg[j]==0&&!vis[j])
{
u = j;
cnt++;
}
}
if(cnt!=1)return false;
vis[u] = 1;
for(int j=0;j<scccnt;j++)
{
if(scc[u][j])deg[j]--;
}
}
return true;
}
int main()
{
int n,m,t;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
init();
for(int i=0;i<m;i++)
{
int a,b;
scanf("%d%d",&a,&b);
addEdge(a,b);
}
int time = 1;
for(int i=1;i<=n;i++)
{
if(!vis[i])tarjan(i,n,time);
}
bool ok = calldfs2(n);
if(ok) printf("Yes\n");
else printf("No\n");
}
return 0;
}
参考资料:
[url]http://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm#Overview [/url]