dijistra是一种贪心算法 用来求无向图两点间的最短距离
具体的内容我不多说了..
这边写的代码没有经过太多的验证 用了一个简单的例子做 所以也许还会有些地方有些问题
用的例子是
blog.csdn.net/v_july_v/article/details/6096981
内的
图和具体步骤如下:
具体代码如下:
%% @author cc fairjm %% @doc @todo Add description to dijstra_run. -module(dijstra_run). %% ==================================================================== %% API functions %% ==================================================================== -export([run/0]). run() -> %%定义距离的格式 这边的定义为 List中放入Tuple的结构(这样可以方便后面用lists库内的key系列函数) %%Tuple的结构定义为 {节点,[{与节点相连的其他节点,距离}....]} Distance=[{a,[{b,6},{c,3}]}, {b,[{a,6},{c,2},{d,5}]}, {c,[{a,3},{b,2},{d,3},{e,4}]}, {d,[{e,2},{b,5},{c,3},{f,3}]}, {e,[{c,4},{d,2},{f,5}]}, {f,[{d,3},{e,5}]} ], %%初始状态 Init=[b,c,d,e,f], %%终状态 Final=[a], %%路线初始化 结构依旧为List中放入Tuple Tuple的含义为{目标节点,目标节点和A的距离,路线} Route=[{a,0,[a]},{b,infinity,[a]},{c,infinity,[a]},{d,infinity,[a]},{e,infinity,[a]},{f,infinity,[a]}], calcu(Init,Final,Route,Distance) . %% ==================================================================== %% Internal functions %% ==================================================================== calcu([],_Final,Route,_Distance)-> Route ; calcu(Init,Final,Route,Distance) -> MinLists=lists:foldl(fun(Elem,In)-> %%当前元素到初始节点A的距离 {Elem,Elem_to_A,Elem_to_A_List}=lists:keyfind(Elem, 1,Route), %%遍历当前元素和各个节点的距离 {Elem,List}=lists:keyfind(Elem, 1, Distance), %%过滤如果目标节点比在当前表里的还大那就没必要继续算下去了 Shorter_List=lists:filter(fun({Elem2,Dis})-> %%目标节点的真实距离=当前元素到初始节点A的距离+当前元素到A的距离 Dis_to_A=Dis+Elem_to_A, {Elem2,Elem2_to_A,_}=lists:keyfind(Elem2, 1,Route), Elem2_to_A > Dis_to_A end , List), In++lists:map(fun({Elem2,Dis}) -> {Elem2,Dis+Elem_to_A,Elem_to_A_List++[Elem2]} end, Shorter_List) end, [], Final), Tuple=lists:nth(1, lists:keysort(2,MinLists)), %%拿出End用来后面更新Route的内容 {End,_,_}=Tuple, NewRoute=lists:keyreplace(End, 1, Route, Tuple), NewFinal=Final++[End], NewInit=Init--[End], io:format("~p~n", [NewRoute]), calcu(NewInit,NewFinal,NewRoute,Distance) .
代码运行如下:
28> c("dijstra_run").
{ok,dijstra_run}
29> dijstra_run:run().
[{a,0,[a]},
{b,infinity,[a]},
{c,3,[a,c]},
{d,infinity,[a]},
{e,infinity,[a]},
{f,infinity,[a]}]
[{a,0,[a]},
{b,5,[a,c,b]},
{c,3,[a,c]},
{d,infinity,[a]},
{e,infinity,[a]},
{f,infinity,[a]}]
[{a,0,[a]},
{b,5,[a,c,b]},
{c,3,[a,c]},
{d,6,[a,c,d]},
{e,infinity,[a]},
{f,infinity,[a]}]
[{a,0,[a]},
{b,5,[a,c,b]},
{c,3,[a,c]},
{d,6,[a,c,d]},
{e,7,[a,c,e]},
{f,infinity,[a]}]
[{a,0,[a]},
{b,5,[a,c,b]},
{c,3,[a,c]},
{d,6,[a,c,d]},
{e,7,[a,c,e]},
{f,9,[a,c,d,f]}]
[{a,0,[a]},
{b,5,[a,c,b]},
{c,3,[a,c]},
{d,6,[a,c,d]},
{e,7,[a,c,e]},
{f,9,[a,c,d,f]}]
{ok,dijstra_run}
29> dijstra_run:run().
[{a,0,[a]},
{b,infinity,[a]},
{c,3,[a,c]},
{d,infinity,[a]},
{e,infinity,[a]},
{f,infinity,[a]}]
[{a,0,[a]},
{b,5,[a,c,b]},
{c,3,[a,c]},
{d,infinity,[a]},
{e,infinity,[a]},
{f,infinity,[a]}]
[{a,0,[a]},
{b,5,[a,c,b]},
{c,3,[a,c]},
{d,6,[a,c,d]},
{e,infinity,[a]},
{f,infinity,[a]}]
[{a,0,[a]},
{b,5,[a,c,b]},
{c,3,[a,c]},
{d,6,[a,c,d]},
{e,7,[a,c,e]},
{f,infinity,[a]}]
[{a,0,[a]},
{b,5,[a,c,b]},
{c,3,[a,c]},
{d,6,[a,c,d]},
{e,7,[a,c,e]},
{f,9,[a,c,d,f]}]
[{a,0,[a]},
{b,5,[a,c,b]},
{c,3,[a,c]},
{d,6,[a,c,d]},
{e,7,[a,c,e]},
{f,9,[a,c,d,f]}]