- Pytorch实现之对称卷积神经网络结构实现超分辨率
这张生成的图像能检测吗
优质GAN模型训练自己的数据集pytorchcnn人工智能生成对抗网络神经网络深度学习
简介简介:针对传统的超分辨率重建技术所重建的图像过于光滑且缺乏细节的问题,作者提出了一种改进的生成对抗图像超分辨率网络。该改进方法基于深度神经网络,其生成模型包含多层卷积模块和多层反卷积模块,其中在感知损失基础上增加了跳层连接和损失函数。该判别模型由多层神经网络组成,其损失函数基于生成式对抗网络生成的判别模型损失函数。论文题目:ImageSuper-resolutionReconstruction
- YOLOv11改进 | 注意力篇 | YOLOv11引入24年ECCV的自调制特征聚合注意力模块(SMFA),并构建C2PSA_SMFA
小李学AI
YOLOv11有效涨点专栏YOLO深度学习人工智能计算机视觉目标检测机器学习神经网络
1.SMFA介绍1.1摘要:基于Transformer的图像复原方法由于Transformer的自注意(self-attention,SA)特性能够更好地挖掘非局部信息,从而获得更好的高分辨率图像重建效果,因此具有重要的应用价值。然而,关键点积SA需要大量的计算资源,这限制了其在低功耗器件中的应用。此外,模拟退火机制的低通特性限制了其捕获局部细节的能力,从而导致平滑的重建结果。针对该问题,该文提出
- Vidu 5.0 视频生成模型深度解析
Liudef06
AI生成视频音视频计算机视觉人工智能深度学习
Vidu5.0视频生成模型深度解析(2025年3月)一、核心技术架构多模态动态建模基于DiT(DiffusionTransformer)架构:结合3D时空注意力机制,实现动态场景的精准建模。视频生成能力:支持生成最长16秒、1080P分辨率的视频,并具备多镜头切换能力。物理特性模拟:模拟真实物理特性,如光影反射、流体运动。角色一致性控制三视图角色生成:用户上传角色三视图图片,模型可生成360度动态
- 农业无人机:无人机图像处理_(5).无人机图像在精准农业中的应用
zhubeibei168
无人机无人机图像处理人工智能游戏引擎人机交互农业检测
无人机图像在精准农业中的应用1.引言在精准农业中,无人机图像处理技术发挥着重要作用。通过无人机采集的高分辨率图像,农民和农业研究人员可以实时监测作物生长情况、土壤湿度、病虫害状况等,从而实现精准管理。本节将详细介绍无人机图像在精准农业中的应用,包括图像采集、图像预处理、图像分析和数据可视化等环节。2.无人机图像采集无人机图像采集是精准农业图像处理的第一步。无人机配备有高分辨率相机,可以在空中对农田
- Tailwind CSS 学习笔记(二)
SSHSHLSH
css前端
一、辅助工具在vscode中使用TailwindCSS,可安装官方提供的TailwindCSSIntelliSense插件,该插件可以提供自动补全、语法高亮及检查功能。二、TailwindCSS中的基本单位CSS中常见单位1、绝对单位绝对单位的值固定,不依赖其他元素或设备特性,通常用于打印或固定尺寸场景:像素(px):表示屏幕上的物理像素点,是绝对单位中最常用的。但实际物理尺寸受屏幕分辨率(dpi
- Iptv机顶盒之epg界面h5开发注意事项
莱城意乱
tvhtml5javascripthtml智能电视
发现机顶盒上内置的浏览器好像都是阉割版的,很多基本的样式或者js写法用不了。以下为注意事项(不足之处还望指点,谢谢):一般机顶盒内置的浏览器都是ie8一下的版本浏览器的分辨率都是1280*720不允许出现css新特性,单位都是px,最好用绝对定位position,不用考虑电视屏幕尺寸的问题能用的css属性:position、width、height、top、right、bottom、left、fo
- MATLAB图像处理:64级小波变换与边缘检测实战
ELSON麦香包
本文还有配套的精品资源,点击获取简介:小波变换是数字信号处理中强大的工具,特别适用于图像分析和处理。本资料包着重探讨如何利用MATLAB进行64级小波变换以实现图像的方向性和边缘检测。通过分析小波变换的多分辨率特性以及其在提取图像细节和边缘信息中的优势,本课程将指导学生通过实际操作步骤,包括图像加载、小波分解、边缘定位及图像重构,来掌握小波变换和边缘检测算法。学生将学习如何使用MATLAB中的wa
- Harmonyos Next,一多开发之媒体查询
给我狠狠的写
媒体
媒体查询媒体查询常用于下面两种场景:针对设备和应用的属性信息(比如显示区域、深浅色、分辨率),设计出相匹配的布局。当屏幕发生动态改变时(比如分屏、横竖屏切换),同步更新应用的页面布局。核心用法咱们分2个角度来看看如何使用媒体查询整合步骤导入模块--->创建监听器--->注册监听器--->移除监听器2.调整媒体查询条件//1.导入模块import{mediaquery}from'@kit.ArkUI
- QT字体显示
走路打滑
QTqt字体显示大小
环境:QT5.63字体显示大小问题现象在不同分辨率的LCD屏幕上进行字体的显示时,会出现大小不一的情况。通常在高分辨率的屏幕上正常大小的字体放到低分辨率屏幕上显示就会看着很小。解决方法记录:无论是QLable控件,各种button控件等等,所显示的字体都可以通过setFont函数去指定设置好的QFont对象。从而去改变所显示文本的属性Qt中的字体QFont定义字体大小是有两种方式,一种是Point
- 鸿蒙相机开发实战:从设备适配到性能调优 —— 我的 ArkTS 录像功能落地手记(API 15)
李游Leo
harmonyos-nextharmonyos鸿蒙harmonyos数码相机华为
引言:为什么我要写这份开发指南?作为一名老技术,最近特别喜欢研究鸿蒙相机功能,而且目前已经更新到API15了,那么咱们更要好好研究一下。而且从手持云台到车载记录仪,每个项目都面临独特挑战:车载场景的高温稳定性、可穿戴设备的低功耗限制、多设备分辨率适配的玄学……这些痛点促使我重新梳理HarmonyOS相机开发的技术脉络——这正是本文的起源。比如之前在一款运动相机项目中,我们最初直接复用Android
- 大屏自适应终极方案:基于比例缩放的完美适配实践(Vue3版)
FFF-X
html5javascript
需求背景在数据可视化大屏开发中,我们常面临这样的挑战:如何让1920*1080的设计稿在不同分辨率设备上完美呈现?传统的响应式布局难以应对复杂的大屏元素排布,本文介绍一种基于CSS3变换的终极适配方案实现思路本方案的核心是动态比例缩放,通过以下关键步骤实现:基准比例锁定:基于设计稿宽高比(16:9)建立基准比例视口实时检测:通过resize事件监听窗口变化智能比例判断:当视口更宽时:保持高度基准,
- Description of a Poisson Imagery Super Resolution Algorithm 论文阅读
青铜锁00
论文阅读Radar论文阅读
DescriptionofaPoissonImagerySuperResolutionAlgorithm1.研究目标与意义1.1研究目标1.2实际意义2.创新方法与模型2.1核心思路2.2关键公式与推导2.2.1贝叶斯框架与概率模型2.2.2MAP估计的优化目标2.2.3超分辨率参数α2.3对比传统方法的优势3.实验验证与结果3.1实验设计3.2关键结果4.未来研究方向(实波束雷达领域)4.1挑战
- RTX 4090旗舰显卡效能实战剖析
智能计算研究中心
其他
内容概要作为NVIDIA新一代旗舰显卡,RTX4090凭借AdaLovelace架构的革新设计,在4K/8K分辨率下的游戏与创作场景中展现了突破性表现。本文将通过多维度实测数据,系统解析其核心性能:首先聚焦8K游戏帧率与光线追踪效果的实战表现,结合DLSS3.0技术的动态对比,揭示超分辨率技术对高负载场景的优化逻辑;随后深入探讨24GBGDDR6X显存在视频渲染与AI运算中的效率边界,同步验证显存
- 【第1章>第6节】CMAC小脑模型神经网络的理论学习与MATLAB仿真
fpga和matlab
#第1章·神经网络学习matlabCMAC小脑模型神经网络人工智能
目录1.使用软件和版本2.CMAC小脑模型神经网络概述2.1CMAC网络结构2.2CMAC地址映射2.3学习过程3.CMAC网络的MATLAB编程实现4.分辨率,重叠度,学习率对CMAC网络的训练性能影响分析4.1分辨率4.2重叠度4.3学习率5.视频操作步骤演示欢迎订阅FPGA/MATLAB/Simulink系列教程《★教程1:matlab入门100例》《★教程2:fpga入门100例》《★教程
- 鸿蒙相机开发实战:从设备适配到性能调优 —— 我的 ArkTS 录像功能落地手记(API 15)
harmonyos
引言:为什么我要写这份开发指南?作为一名老技术,最近特别喜欢研究鸿蒙相机功能,而且目前已经更新到API15了,那么咱们更要好好研究一下。而且从手持云台到车载记录仪,每个项目都面临独特挑战:车载场景的高温稳定性、可穿戴设备的低功耗限制、多设备分辨率适配的玄学……这些痛点促使我重新梳理HarmonyOS相机开发的技术脉络——这正是本文的起源。比如之前在一款运动相机项目中,我们最初直接复用Android
- 生成对抗网络(GAN)的高级变体及在图像生成领域的创新实践
算法探索者
生成对抗网络计算机视觉人工智能
摘要生成对抗网络(GAN)自提出以来,在诸多领域取得了显著进展,尤其是在图像生成方面展现出强大的潜力。本文深入探讨了GAN的多种高级变体,如CycleGAN、StyleGAN等,详细分析它们在结构设计、训练机制上的创新之处,阐述其在生成高分辨率、多样化图像时具备的独特优势,并结合丰富的实际案例,展示这些变体在图像生成领域的卓越应用成果,为相关研究与应用提供全面且深入的参考。一、引言生成对抗网络(G
- WRF移动嵌套结合伏羲模型与CFD(PALM)高精度多尺度降尺度分析研究
Hardess-god
WRF算法人工智能
随着大气科学与数值模拟技术的发展,高精度多尺度气象模拟日益成为科研与应用的热点问题。本文将详细介绍如何使用WRF移动嵌套技术结合伏羲(Fuxi)模型,并通过CFD模型PALM实现精细化降尺度,以满足城市或区域局地精细化气象预报的需求。1.技术路线概述WRF移动嵌套(MovingNesting):动态调整高分辨率嵌套网格位置,追踪天气系统(如台风、强对流系统)以提高局地预报精度。伏羲(Fuxi)模型
- 【图像预处理】
瞬间记忆
深度学习python
(4条消息)图像预处理方法总结_AI强仔的博客-CSDN博客对图像进行预处理的一些常见方法包括:调整图像大小和分辨率,以便适应模型的输入要求。对图像进行裁剪或填充,以使其大小和比例符合要求。调整图像的亮度、对比度和饱和度等图像属性。进行图像平滑或锐化操作,以去除噪声或增强图像特征。进行图像归一化或标准化,以确保各个特征在相同的尺度上。应用数据增强技术,如旋转、平移、缩放、翻转等,以扩大数据集,提高
- 【小白深度教程 1.32】手把手教你从多视角图像进行 3D 重建(SfM 算法)
小寒学姐学AI
3d算法计算机视觉人工智能深度学习python三维重建
【小白深度教程1.32】手把手教你从多视角图像进行3D重建(SfM算法)1.SfM三维重建算法简介2.SfM方法和原理3.安装依赖库4.构建数据集5.可视化结果6.完整代码1.SfM三维重建算法简介从多张照片中开发三维模型被称为多视图3D重建。数码相机的进步以及图像分辨率和清晰度的提高,使得利用仅有的相机而非昂贵的特殊传感器来重建3D图像成为可能。重建的目标是从一组照片中推导场景的几何结构,假设摄
- CS5802一款HDMI转Typec方案转换芯片
芯片嵌入式
CS5802是一款HDMI2.0b到Type-C转换器。C55802具有HDMI2.0b输入,最大带宽可达18Gbps。它支持4K@60Hz的最高分辨率。对于Type-Coutput,它由4个数据通道组成,支持1.62Gbps、2.7Gbps、5.4Gbps的链路速率。内置的可选SSC功能减少了EMI影响。嵌入式微控制器基于32位RISC-Vcore和内部串行闪存。CS5802适用于多个细分市场和
- CVPR 2024 | 低分辨率引领方向:通过自监督学习提升超分辨率的泛化能力
小白学视觉
计算机顶会顶刊论文解读计算机视觉深度学习CVPR计算机顶会论文解读
论文信息题目:Low-ResLeadstheWay:ImprovingGeneralizationforSuper-ResolutionbySelf-SupervisedLearning低分辨率引领方向:通过自监督学习提升超分辨率的泛化能力作者:HaoyuChen,WenboLi,JinjinGu,JingjingRen,HaozeSun,XueyiZou,ZhensongZhang,Youlia
- YOLO魔改之频率分割模块(FDM)
清风AI
YOLO算法魔改系列YOLO人工智能计算机视觉目标检测python深度学习
目标检测原理目标检测是一种将目标分割和识别相结合的图像处理技术,旨在从图像中定位并识别特定目标。深度学习方法,如FasterR-CNN和YOLO系列,已成为主流解决方案。这些方法通常采用两阶段或单阶段策略,通过卷积神经网络(CNN)提取特征并进行分类和定位。在小目标检测中,为克服分辨率低和特征不明显的问题,模型设计中会特别注重特征融合和多尺度处理,以增强对小目标的感知能力。YOLOv8基础YOLO
- Unity3D手游多分辨率适配深度解决方案
晴空了无痕
项目解决方案屏幕适配
一、适配核心问题剖析当前移动端设备分辨率呈现多元化发展趋势,主流设备分辨率跨度从720P到4K级别,屏幕宽高比包含16:9、18:9、19.5:9、21:9等多种形态。适配难点主要体现在:UI元素错位:传统固定锚点布局在不同宽高比下出现显示异常画面比例失调:等比缩放导致屏幕空间浪费或内容裁切性能与效果平衡:高分辨率设备资源消耗与低端设备性能瓶颈异形屏适配:刘海屏、挖孔屏等特殊屏幕形态的兼容处理二、
- 图生视频技术的发展与展望:从技术突破到未来图景
Liudef06
StableDiffusion音视频人工智能深度学习stablediffusion
一、技术发展现状图生视频(Image-to-VideoGeneration)是生成式人工智能(AIGC)的重要分支,其核心是通过单张或多张静态图像生成动态视频序列。近年来,随着深度学习、多模态融合和计算硬件的进步,图生视频技术经历了从基础研究到商业落地的快速演进。早期探索与GAN的奠基早期图生视频技术主要基于生成对抗网络(GAN),通过对抗训练生成低分辨率的视频片段。例如,DeepMind的DVD
- blender渲染有波纹光圈怎么解决
Renderbus瑞云渲染农场
渲染知识瑞云新闻blender渲染农场动画云渲染云渲染效果图云渲染3d云渲染农场
在使用Blender进行三维渲染作业时,偶尔会遇到渲染图像中出现波纹光圈的问题,这种情况的出现会影响渲染效果的质量,导致最终产品效果图无法达到理想的状态,那么此类危机出现时,该如何解决呢?一起来简单看看吧。出现波纹光圈原因常见的诱因包括光照设置不当、色彩位深不足、抗锯齿问题以及渲染分辨率设置不当。针对这些问题,逐一排查并进行针对性的优化调整是根本的解决方案。接下来,我们将探索一些有效的修正策略,帮
- 专门为高速连续扫描设计的TDI工业相机
51camera
工业相机线阵工业相机TDI工业相机
TDI(TimeDelayIntegration,时间延迟积分)工业相机是一种基于特殊CCD(电荷耦合器件)技术的成像设备,主要用于高速、高灵敏度、高分辨率的图像采集场景。其核心原理是通过多级积分和同步电荷转移技术,在物体连续运动时逐行扫描并累积信号,显著提升图像质量和信噪比(SNR)。它是一种特殊的线阵工业相机。核心原理1.多级积分:TDI相机通过多行感光单元(如多级CCD)对同一运动目标进行多
- 6-NBDG 葡萄糖摄取荧光探针,使用方法和注意事项
强化生物实验室
leetcode决策树最小二乘法散列表逻辑回归启发式算法支持向量机
一、试剂描述6-NBDG,一种非水解形式的脱氧葡萄糖类似物的荧光素,可用来监测分离活细胞和完整组织对葡萄糖的摄取和转运,判断细胞活力的指标之一。可用实时共聚焦、高分辨率或宽视野荧光显微镜,以及流式细胞仪来检测。尽管6-NBDG荧光对环境比较敏感,但约在465/540nm下表现出激发和发射波长,使用荧光素(如FITC)的光学滤片来进行结果观察即可。二、试剂信息英文名称:6-(N-(7-Nitrobe
- 如何运用python爬虫爬取图片素材网站的图片?(附完整代码)
大懒猫软件
vue.jspython网络爬虫图像处理bash
在当今数字化时代,高质量的图片资源对于设计师、开发者以及任何需要视觉素材的用户来说都至关重要。壁纸社作为一个提供丰富壁纸资源的网站,涵盖了从普通高清到4K、5K甚至8K超高清的多种分辨率,满足了不同用户的需求。然而,手动下载这些壁纸不仅耗时,而且效率低下。因此,开发一个自动化爬虫程序,批量下载高质量壁纸,不仅能节省时间,还能提高工作效率。本文将详细介绍如何使用Python爬虫技术从壁纸社爬取并保存
- RTX3060帧率优化与电竞级配置实战
智能计算研究中心
其他
内容概要《RTX3060帧率优化与电竞级配置实战》围绕NVIDIAGeForceRTX3060显卡的性能释放展开,系统梳理从硬件适配到软件调校的全链路优化策略。内容涵盖显卡驱动参数的精细化设置、游戏画质与帧率平衡的实战技巧,以及1080P与2K分辨率下的帧率对比测试数据。此外,针对电竞场景需求,文章详细解析了CPU、内存与散热系统的协同配置方案,确保硬件组合在高负载下的稳定性。核心章节优化方向显卡
- RTX4070Ti性能实测与优化解析
智能计算研究中心
其他
内容概要本文将以NVIDIAGeForceRTX4070Ti显卡为核心,系统化呈现其在4K与2K分辨率下的性能表现差异,并深入解析光线追踪与DLSS3.0技术对游戏体验的实际影响。通过15款主流3A大作的帧数实测数据,结合《赛博朋克2077》《艾尔登法环》等典型场景的测试结果,量化对比不同画质预设下的流畅度变化。此外,文章将提供经过验证的超频参数配置方案,涵盖电压调节、核心频率偏移及显存时序优化,
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/pwd@192.168.0.5:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理