Tries

1.  String symbol table implementations cost summary (in terms of how many characters are compared)


Tries_第1张图片
 

2.  Tries [from retrieval, but pronounced "try"]

    --  Store characters in nodes (not keys).

    --  Each node has R children, one for each possible character.

    --  For now, we do not draw null links.

    --  Search in a trie: Follow links corresponding to each character in the key.

        -  Search hit: node where search ends has a non-null value.

        -  Search miss: reach null link or node where search ends has null value.

    --  Insertion into a trie: Follow links corresponding to each character in the key.

        -  Encounter a null link: create new node.

        -  Encounter the last character of the key: set value in that node.

    --  To delete a key-value pair:

        -  Find the node corresponding to key and set value to null.

        -  If node has null value and all null links, remove that node (and recur).

 

Tries_第2张图片

 

    --  Java implementation:

 

public class TrieST<Value>
{
    private static final int R = 256;
    private Node root = new Node();

    private static class Node
    {
        private Object value;
        private Node[] next = new Node[R];
    }
    
    public void put(String key, Value val)
    { root = put(root, key, val, 0); }

    private Node put(Node x, String key, Value val, int d)
    {
        if (x == null) x = new Node();
        if (d == key.length()) { x.val = val; return x; }
        char c = key.charAt(d);
        x.next[c] = put(x.next[c], key, val, d+1);
        return x;
    }

    public boolean contains(String key)
    { return get(key) != null; }

    public Value get(String key)
    {
        Node x = get(root, key, 0);
        if (x == null) return null;
        return (Value) x.val;
    }

    private Node get(Node x, String key, int d)
    {
        if (x == null) return null;
        if (d == key.length()) return x;
        char c = key.charAt(d);
        return get(x.next[c], key, d+1);
    }

    public void delete(String key) {
        delete(root, key, 0);
    }

    private Value delete(Node x , String key, int d) {
        if ( x == null) return null;
        if ( d == key.length() ) {
            x.val = null;
        } else {
            char c = key.charAt(d);
            x.next[c] = delete(x.next[c] , key, d+1);
        }
        if ( empty(x) ) x = null;
        return x;
    }

    private boolean empty(Node x) {
        if ( x.val != null ) return false;
        for ( int i = 0 ; i < x.next.length ; i ++ ) {
            if ( x.next[i] != null ) return false;
        }
        return true;
    } 
}

 
Tries_第3张图片
 

 

    --  Performance:

        --  Search hit. Need to examine all L characters for equality.

        --  Search miss.

            -  Could have mismatch on first character.

            -  Typical case: examine only a few characters (sublinear).

        --  Space. R null links at each leaf.

            (but sublinear space possible if many short strings share common prefixes)

 

3.  Ternary search tries

    --  Store characters and values in nodes (not keys).

    --  Each node has 3 children: smaller (left), equal (middle), larger (right).

Tries_第4张图片
    --  Search in a TST: Follow links corresponding to each character in the key.

        --  If less, take left link; if greater, take right link.

        --  If equal, take the middle link and move to the next key character.

        --  Search hit. Node where search ends has a non-null value.

        --  Search miss. Reach a null link or node where search ends has null value.

    --  Java Implementation:

 

public class TST<Value>
{
    private Node root;

    private class Node
    {
        private Value val;
        private char c;
        private Node left, mid, right;
    }

    public void put(String key, Value val)
    { root = put(root, key, val, 0); }

    private Node put(Node x, String key, Value val, int d)
    {
        char c = key.charAt(d);
        if (x == null) { x = new Node(); x.c = c; }
        if (c < x.c) x.left = put(x.left, key, val, d);
        else if (c > x.c) x.right = put(x.right, key, val, d);
        else if (d < key.length() - 1) x.mid = put(x.mid, key, val, d+1);
        else x.val = val;
        return x;
    }

    public boolean contains(String key)
    { return get(key) != null; }

    public Value get(String key)
    {
        Node x = get(root, key, 0);
        if (x == null) return null;
        return x.val;
    }

    private Node get(Node x, String key, int d)
    {
        if (x == null) return null;
        char c = key.charAt(d);
        if (c < x.c) return get(x.left, key, d);
        else if (c > x.c) return get(x.right, key, d);
        else if (d < key.length() - 1) return get(x.mid, key, d+1);
        else return x;
    }
}

 

 

4.  TST with R^2 branching at root: Hybrid of R-way trie and TST.

    --  Do R^2-way branching at root.

    --  Each of R^2 root nodes points to a TST.

 

Tries_第5张图片

 

5.  String symbol table implementation cost summary:


Tries_第6张图片
 

6.  TST vs. hashing

    --  Hashing:

        --  Need to examine entire key.

        --  Search hits and misses cost about the same.

        --  Performance relies on hash function.

        --  Does not support ordered symbol table operations.

    --  TSTs:

        --  Works only for strings (or digital keys).

        --  Only examines just enough key characters.

        --  Search miss may involve only a few characters.

        --  Supports ordered symbol table operations (plus others!).

    --  Bottom line. TSTs are:

        --  Faster than hashing (especially for search misses).

        --  More flexible than red-black BSTs. 

 

7. Ordered iteration: To iterate through all keys in sorted order:

    --  Do inorder traversal of trie; add keys encountered to a queue.

    --  Maintain sequence of characters on path from root to node.

public Iterable<String> keys()
{
    Queue<String> queue = new Queue<String>();
    collect(root, "", queue);
    return queue;
}

private void collect(Node x, String prefix, Queue<String> q)
{
    if (x == null) return;
    if (x.val != null) q.enqueue(prefix);
    for (char c = 0; c < R; c++)
        collect(x.next[c], prefix + c, q);
}

 

8.  Character-based operations:

    --  Prefix match: Find all keys in a symbol table starting with a given prefix.

        --  Ex. Keys with prefix sh: she, shells, and shore.

        --  application:

            - Autocomplete in a cell phone, search bar, text editor, or shell.

            - User types characters one at a time.

            - System reports all matching strings.

public Iterable<String> keysWithPrefix(String prefix)
{
    Queue<String> queue = new Queue<String>();
    Node x = get(root, prefix, 0);
    collect(x, prefix, queue);
    return queue;
}

    --  Wildcard match. Keys that match .he: she and the.

    --  Longest prefix: Find longest key in symbol table that is a prefix of query string.

        --  Ex. Key that is the longest prefix of shellsort: shells.

public String longestPrefixOf(String query)
{
    int length = search(root, query, 0, 0);
    return query.substring(0, length);
}

private int search(Node x, String query, int d, int length)
{
    if (x == null) return length;
    if (x.val != null) length = d;
    if (d == query.length()) return length;
        char c = query.charAt(d);
    return search(x.next[c], query, d+1, length);
}

 

9.  String symbol tables summary:

    --  Red-black BST.

        -  Performance guarantee: log N key compares.

        -  Supports ordered symbol table API.

    --  Hash tables.

        -  Performance guarantee: constant number of probes.

        -  Requires good hash function for key type.

    --  Tries. R-way, TST.

        -  Performance guarantee: log N characters accessed.

        -  Supports character-based operations.

你可能感兴趣的:(search,Ternary,Tries,Tries)