使用eclipse插件进行mapreduce程序开发和运行

一、环境说明

linux:redhat enterprise linux 5

hadoop:0.20.2

eclipse:3.4.2

jdk:1.6.21

ant:1.8.2

 

二、安装hadoop伪分布式

 

三、安装eclipse

把eclipse-SDK-3.4.2-linux-gtk.tar.gz解压到/home/hadoop/eclipse3.4.2

 

四、安装ant 1.8.2

1、把apache-ant-1.8.2-bin.tar.gz解压到/usr/apache-ant-1.8.2

2、设置/etc/profile:

export ANT_HOME=/usr/apache-ant-1.8.2
export PATH=$PATH:$ANT_HOME/bin

 

五、生成hadoop eclipse plugin

1、修改/usr/local/hadoop/hadoop-0.20.2/build.xml:

修改 <property name="version" value="0.20.2"/>

 

2、修改/usr/local/hadoop/hadoop-0.20.2/src/contrib/build-contrib.xml:

添加 <property name="eclipse.home" location="/home/hadoop/eclipse3.4.2"/>

 

3、修改 /usr/local/hadoop/hadoop-0.20.2/src/contrib/eclipse-plugin/src/java/org/apache/hadoop/eclipse/launch/HadoopApplicationLaunchShortcut.java

 

注释掉原来的//import org.eclipse.jdt.internal.debug.ui.launcher.JavaApplicationLaunchShortcut;
改为import org.eclipse.jdt.debug.ui.launchConfigurations.JavaApplicationLaunchShortcut; 

4、下载jdk-1_5_0_22-linux-i586.bin,安装到/home/hadoop/jdk1.5.0_22,不用设置环境变量。

 

5、下载apache-forrest-0.8.tar.gz,解压到/home/hadoop/apache-forrest-0.8。

 

6、编译并打包

$ cd /usr/local/haoop/hdoop-0.20.2

$ ant compile
$ ln -sf /usr/local/hadoop/hadoop-0.20.2/docs  /usr/local/hadoop/hadoop-0.20.2/build/docs
$ ant package


      如果成功的话,会在/usr/local/hadoop/hadoop-0.20.2/build/contrib/eclipse-plugin

下生成hadoop-0.20.2-eclipse-plugin.jar。

 

六、设置eclipse

1、把hadoop-0.20.2-eclipse-plugin.jar复制到/home/hadoop/eclipse3.4.2/plugins下。

 

2、打开eclipse。

 

3、在eclipse中设置Window->Open Perspective->Other->Map/Reduce

 

4、新建project

File->New->Project->Map/Reduce Project

输入Project name:icas

Configure Hadoop install directory...


使用eclipse插件进行mapreduce程序开发和运行_第1张图片
 
 


使用eclipse插件进行mapreduce程序开发和运行_第2张图片

 



 


使用eclipse插件进行mapreduce程序开发和运行_第3张图片
 

 


使用eclipse插件进行mapreduce程序开发和运行_第4张图片
 

 

右键icas->properties

使用eclipse插件进行mapreduce程序开发和运行_第5张图片
 
 

 

mapper类

package Sample;

import java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class mapper extends Mapper<Object, Text, Text, IntWritable> {

  private final static IntWritable one = new IntWritable(1);
  private Text word = new Text();

  public void map(Object key, Text value, Context context)
      throws IOException, InterruptedException {
    StringTokenizer itr = new StringTokenizer(value.toString());
    while (itr.hasMoreTokens()) {
      word.set(itr.nextToken());
      context.write(word, one);
    }
  }
}

 

 

reducer类

package Sample;

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class reducer extends Reducer<Text, IntWritable, Text, IntWritable> {
  private IntWritable result = new IntWritable();

  public void reduce(Text key, Iterable<IntWritable> values, Context context)
      throws IOException, InterruptedException {
    int sum = 0;
    for (IntWritable val : values) {
      sum += val.get();
    }
    result.set(sum);
    context.write(key, result);
  }
}

 

mapreduce driver类

package Sample;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

public class WordCount {

  public static void main(String[] args) throws Exception {
    Configuration conf = new Configuration();
    String[] otherArgs = new GenericOptionsParser(conf, args)
        .getRemainingArgs();
    if (otherArgs.length != 2) {
      System.err.println("Usage: wordcount <in> <out>");
      System.exit(2);
    }
    Job job = new Job(conf, "word count");
    job.setJarByClass(WordCount.class);
    job.setMapperClass(mapper.class);

    job.setCombinerClass(reducer.class);
    job.setReducerClass(reducer.class);
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(IntWritable.class);
    FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
    FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
    System.exit(job.waitForCompletion(true) ? 0 : 1);
  }
}

 

 

Run As—>Run Configurations->Arguments中输入:/user/hadoop/input/f1 /user/hadoop/output

 

Run As—>Java Application

 

  Run As—>Run on Hadoop

 

 

结果:


使用eclipse插件进行mapreduce程序开发和运行_第6张图片
 

你可能感兴趣的:(apache,eclipse,mapreduce,hadoop,ant)