先回顾上篇所说的"正向运动学":以人行走的例子来说,基本上可以理解为大腿驱动小腿,小腿驱动脚,从而引发的一系列姿态调整和运动。再举一个例子,我们用着拿一根软鞭或链条的一端挥舞,被手挥舞的这一端会把"能量"向另一端传递(即固定端驱动紧接的部分,而紧接的部分又驱动下一段紧接的部分),从而使整个系统也随之运动.
而"反向运动学"正好相反,举个不恰当的例子,小时候估计很多人玩过“死”青蛙(之所以要说是死的,是为了排除活体的自主运动),用手去拖死青蛙的脚(即自由端),会发现拉脚的同时,也带动青蛙的大腿在拖动,进而拖动了整体青蛙“尸体”;如果换成链条的例子,则相当于反过来,我们拿起链条的另一端拖动,会带动与它紧密关联的部分一起运动,从而带动整个链条一起被拖动。
单关节拖动:
package
{
import
flash.display.Sprite;
import
flash.events.Event;
public
class
OneSegmentDrag
extends
Sprite {
private
var
segment0:Segment;
public
function
OneSegmentDrag() {
init();
}
private
function
init():
void
{
segment0=
new
Segment(
100
,
20
);
addChild(segment0);
segment0.x=stage.stageWidth/
2
;
segment0.y=stage.stageHeight/
2
;
addEventListener(Event.ENTER_FRAME,EnterFrameHandler);
}
private
function
EnterFrameHandler(event:Event):
void
{
var
dx:
Number
=mouseX-segment0.x;
var
dy:
Number
=mouseY-segment0.y;
var
angle:
Number
=Math.atan2(dy,dx);
segment0.rotation=angle*
180
/Math.PI;
var
w:
Number
=segment0.getPin().x-segment0.x;
var
h:
Number
=segment0.getPin().y-segment0.y;
segment0.x=mouseX-w;
segment0.y=mouseY-h;
}
}
}
示意图:
双关节的拖动:
var
seg1:Segment =
new
Segment(
100
,
20
);
seg1.x =
100
;
seg1.y =
50
;
addChild(seg1);
var
seg2:Segment =
new
Segment(
100
,
10
);
seg2.x = seg1.getPin().x;
seg2.y = seg1.getPin().y;
addChild(seg2);
addEventListener(Event.ENTER_FRAME,EnterFrameHandler);
function
EnterFrameHandler(e:Event):
void
{
//seg2跟着鼠标动
var
dx1:
Number
= mouseX - seg2.x;
var
dy1:
Number
= mouseY - seg2.y;
var
angle1:
Number
= Math.atan2(dy1,dx1);
seg2.rotation = angle1*
180
/Math.PI;
var
w1:
Number
= seg2.getPin().x - seg2.x;
var
h1:
Number
= seg2.getPin().y - seg2.y;
seg2.x = mouseX-w1;
seg2.y = mouseY-h1;
//seg1跟着seg2动
var
dx2:
Number
= seg2.x - seg1.x;
var
dy2:
Number
= seg2.y - seg1.y;
var
angle2:
Number
= Math.atan2(dy2,dx2);
seg1.rotation = angle2*
180
/Math.PI;
var
w2:
Number
= seg1.getPin().x - seg1.x;
var
h2:
Number
= seg1.getPin().y - seg1.y;
seg1.x = seg2.x -w2;
seg1.y = seg2.y -h2;
}
多关节的拖动:
var
segNum:
Number
=
10
;
var
segs:
Array
=
new
Array
(segNum);
function
init():
void
{
for
(
var
i:
int
=
0
; i<segNum; i++) {
segs[i]=
new
Segment(
40
,
12
);
segs[i].x=stage.stageWidth/
2
;
segs[i].y=stage.stageHeight/
2
;
addChild(segs[i]);
}
addEventListener(Event.ENTER_FRAME,EnterFrameHandler);
}
function
EnterFrameHandler(e:Event):
void
{
drag(segs[segNum-
1
],mouseX,mouseY);
for
(
var
i:
int
=segNum-
2
; i>=
0
; i--) {
drag(segs[i],segs[i+
1
].x,segs[i+
1
].y);
}
}
//拖动的封装
function
drag(seg:Segment,targetX:
Number
,targetY:
Number
):
void
{
var
dx:
Number
=targetX-seg.x;
var
dy:
Number
=targetY-seg.y;
var
angle:
Number
=Math.atan2(dy,dx);
seg.rotation=angle*
180
/Math.PI;
var
w:
Number
=seg.getPin().x-seg.x;
var
h:
Number
=seg.getPin().y-seg.y;
seg.x=targetX-w;
seg.y=targetY-h;
}
init();
如果说反向运动学的拖动,是用外力拖“死青蛙”的脚,则反向运动学中的伸展则正好相反,它相当于把青蛙的身体固定住,而青蛙的脚主动伸出去够某一物体(好吧,死青蛙是不会主动去抓物体的,人死不能复生,青蛙也一样,也许换成另一种说法更容易理解:我们坐在位子上不动,想伸手去拿桌子远处的东西,其实就是这个意思)
ok,如果感觉还不是太晕的话,再来小结下“正向运动”与“反向运动”的区别:
人行走时“下肢”系统的运动之所以被称做正向运动,主要特征是大腿先动,从而驱动小腿,而小腿又驱动脚,更准确的讲可以理解为“固定端驱动自由端”,能量的传递是自上而下,从固定端传递到自由端,也就是所谓的“正向”。
而人伸手去拿东西,可以看作 “手带动上臂”,而“上臂又带动胳膊”,即“自由端带动固定端”,能量的传递是自下而上,从自由端传递到固定端,即所谓的“反向”。
双关节的伸展:
上面的示例中,粗的关节当做胳膊,细的关节当做手臂,用鼠标在上面移动时,会发现手臂始终试图伸展到鼠标所在位置,但由于胳膊被固定点限制了,所以形成了这种效果。
下面是处理的示意图:
处理步骤:
1.手臂seg1,先绕着自己的固定点(x,y),朝鼠标所在点(mousex,mousey)旋转
2.得到一个新的点(tx,ty)--红色的实线三角形,然后胳膊seg2以(tx,ty)为目标旋转
3.重新将seg1挂到seg2的自由端
4.重复以上处理,直到二个关节的姿态不再有任何变化为止
var
seg1:Segment=
new
Segment(
80
,
10
);
seg1.x=
130
;
seg1.y=
160
;
addChild(seg1);
var
seg2:Segment=
new
Segment(
60
,
20
);
seg2.x=seg1.getPin().x;
seg2.y=seg1.getPin().y;
addChild(seg2);
function
init():
void
{
addEventListener(Event.ENTER_FRAME,EnterFrameHandler);
}
function
EnterFrameHandler(e:Event):
void
{
var
dx:
Number
=mouseX-seg1.x;
var
dy:
Number
=mouseY-seg1.y;
var
angle:
Number
=Math.atan2(dy,dx);
seg1.rotation=angle*
180
/Math.PI;
var
w:
Number
=seg1.getPin().x-seg1.x;
var
h:
Number
=seg1.getPin().y-seg1.y;
var
tx:
Number
=mouseX-w;
var
ty:
Number
=mouseY-h;
dx=tx-seg2.x;
dy=ty-seg2.y;
angle=Math.atan2(dy,dx);
seg2.rotation=angle*
180
/Math.PI;
seg1.x=seg2.getPin().x;
seg1.y=seg2.getPin().y;
}
init();
注意一个细节:反向运动伸展时,关节是倒着挂的,即最后一个addChild的Segment做为系统固定端,第一个Segment实例为做系统的伸展自由端。可以把上面的动画放慢到每秒一帧,上述处理步骤也许更容易看清楚
function
EnterFrameHandler(e:Event):
void
{
var
dx:
Number
=mouseX-seg1.x;
var
dy:
Number
=mouseY-seg1.y;
var
angle:
Number
=Math.atan2(dy,dx);
seg1.rotation=angle*
180
/Math.PI;
var
w:
Number
=seg1.getPin().x-seg1.x;
var
h:
Number
=seg1.getPin().y-seg1.y;
var
tx:
Number
=mouseX-w;
var
ty:
Number
=mouseY-h;
dx=tx-seg2.x;
dy=ty-seg2.y;
angle=Math.atan2(dy,dx);
seg2.rotation=angle*
180
/Math.PI;
seg1.x=seg2.getPin().x;
seg1.y=seg2.getPin().y;
//新增的画线部分,以方便观察
graphics.clear();
graphics.lineStyle(
1
,
0xff0000
,
0.5
);
graphics.moveTo(mouseX,mouseY);
graphics.lineTo(seg1.getPin().x,seg1.getPin().y);
graphics.lineStyle(
1
,
0x0000ff
,
0.5
);
graphics.moveTo(mouseX,mouseY);
graphics.lineTo(seg2.getPin().x,seg2.getPin().y);
}
多关节的伸展:
var
segNum:
uint
=
10
;
var
segs:
Array
=
new
Array
(segNum);
var
i:
int
=
0
;
function
init():
void
{
for
(i=
0
; i<segNum; i++) {
segs[i]=
new
Segment(
50
,
10
+
2
*i);
segs[i].x=
30
;
segs[i].y=
30
;
addChild(segs[i]);
}
addEventListener(Event.ENTER_FRAME,EnterFrameHandler);
}
function
EnterFrameHandler(e:Event):
void
{
var
target:Point=expand(segs[
0
],mouseX,mouseY);
//记住:第一个为伸展末端,最后一个为固定端
for
(i=
1
; i<segNum; i++) {
target=expand(segs[i],target.x,target.y);
}
//倒挂所有Segment
for
(i = segNum -
1
; i >
0
; i--) {
hang(segs[i-
1
],segs[i]);
}
}
function
expand(seg:Segment,targetX:
Number
,targetY:
Number
):Point {
var
dx:
Number
=targetX-seg.x;
var
dy:
Number
=targetY-seg.y;
var
angle:
Number
=Math.atan2(dy,dx);
seg.rotation=angle*
180
/Math.PI;
var
w:
Number
=seg.getPin().x-seg.x;
var
h:
Number
=seg.getPin().y-seg.y;
var
tx:
Number
=targetX-w;
var
ty:
Number
=targetY-h;
return
new
Point(tx,ty);
}
function
hang(segA:Segment,segB:Segment) {
segA.x=segB.getPin().x;
segA.y=segB.getPin().y;
}
init();
如果把目标点从鼠标位置换成某一个运动物体的坐标,效果会更好玩:
var
segNum:
uint
=
9
;
var
segs:
Array
=
new
Array
(segNum);
var
i:
int
=
0
;
var
ball:Ball;
var
gravity:
Number
=
0.3
;
var
bounce:
Number
=-
0.95
;
function
init():
void
{
ball =
new
Ball(
15
);
ball.vx=
10
;
addChild(ball);
//加入一个小球
for
(i=
0
; i<segNum; i++) {
segs[i]=
new
Segment(
45
,
10
+
1
*i);
segs[i].x=
30
;
segs[i].y=
30
;
addChild(segs[i]);
}
addEventListener(Event.ENTER_FRAME,EnterFrameHandler);
}
function
EnterFrameHandler(e:Event):
void
{
moveBall();
//让小球动起来
var
target:Point=expand(segs[
0
],ball.x,ball.y);
//最后一个跟着小球跑
for
(i=
1
; i<segNum; i++) {
target=expand(segs[i],target.x,target.y);
}
for
(i = segNum -
1
; i >
0
; i--) {
hang(segs[i-
1
],segs[i]);
}
}
function
expand(seg:Segment,targetX:
Number
,targetY:
Number
):Point {
var
dx:
Number
=targetX-seg.x;
var
dy:
Number
=targetY-seg.y;
var
angle:
Number
=Math.atan2(dy,dx);
seg.rotation=angle*
180
/Math.PI;
var
w:
Number
=seg.getPin().x-seg.x;
var
h:
Number
=seg.getPin().y-seg.y;
var
tx:
Number
=targetX-w;
var
ty:
Number
=targetY-h;
return
new
Point(tx,ty);
}
function
hang(segA:Segment,segB:Segment) {
segA.x=segB.getPin().x;
segA.y=segB.getPin().y;
}
function
moveBall():
void
{
ball.vy+=gravity;
ball.x+=ball.vx;
ball.y+=ball.vy;
if
(ball.x+ball.radius>stage.stageWidth) {
ball.x=stage.stageWidth-ball.radius;
ball.vx*=bounce;
}
else
if
(ball.x - ball.radius <
0
) {
ball.x=ball.radius;
ball.vx*=bounce;
}
if
(ball.y+ball.radius>stage.stageHeight) {
ball.y=stage.stageHeight-ball.radius;
ball.vy*=bounce;
}
else
if
(ball.y - ball.radius <
0
) {
ball.y=ball.radius;
ball.vy*=bounce;
}
}
init();
结合以前学到的碰撞检测,能做出更出色的交互效果:
var
segNum:
uint
=
4
;
var
segs:
Array
=
new
Array
(segNum);
var
i:
int
=
0
;
var
ball:Ball;
var
gravity:
Number
=
0.2
;
var
bounce:
Number
=-
0.95
;
function
init():
void
{
ball=
new
Ball(
15
);
ball.vx=
10
;
addChild(ball);
//加入一个小球
for
(i=
0
; i<segNum; i++) {
segs[i]=
new
Segment(
45
,
10
+
1
*i);
segs[i].x=
300
;
segs[i].y=
385
;
addChild(segs[i]);
}
addEventListener(Event.ENTER_FRAME,EnterFrameHandler);
}
function
EnterFrameHandler(e:Event):
void
{
moveBall();
var
target:Point=expand(segs[
0
],ball.x,ball.y);
for
(i=
1
; i<segNum; i++) {
target=expand(segs[i],target.x,target.y);
}
for
(i = segNum -
1
; i >
0
; i--) {
hang(segs[i-
1
],segs[i]);
}
checkHit();
//碰撞检测
}
function
expand(seg:Segment,targetX:
Number
,targetY:
Number
):Point {
var
dx:
Number
=targetX-seg.x;
var
dy:
Number
=targetY-seg.y;
var
angle:
Number
=Math.atan2(dy,dx);
seg.rotation=angle*
180
/Math.PI;
var
w:
Number
=seg.getPin().x-seg.x;
var
h:
Number
=seg.getPin().y-seg.y;
var
tx:
Number
=targetX-w;
var
ty:
Number
=targetY-h;
return
new
Point(tx,ty);
}
function
hang(segA:Segment,segB:Segment) {
segA.x=segB.getPin().x;
segA.y=segB.getPin().y;
}
function
moveBall():
void
{
ball.vy+=gravity;
ball.x+=ball.vx;
ball.y+=ball.vy;
if
(ball.x+ball.radius>stage.stageWidth) {
ball.x=stage.stageWidth-ball.radius;
ball.vx*=bounce;
}
else
if
(ball.x - ball.radius <
0
) {
ball.x=ball.radius;
ball.vx*=bounce;
}
if
(ball.y+ball.radius>stage.stageHeight) {
ball.y=stage.stageHeight-ball.radius;
ball.vy*=bounce;
}
else
if
(ball.y - ball.radius <
0
) {
ball.y=ball.radius;
ball.vy*=bounce;
}
}
function
checkHit():
void
{
var
segment:Segment=segs[
0
];
var
dx:
Number
=segment.getPin().x-ball.x;
var
dy:
Number
=segment.getPin().y-ball.y;
var
dist:
Number
=Math.sqrt(dx*dx+dy*dy);
if
(dist<ball.radius) {
ball.vx+=Math.random()*
2
-
1
;
//给小球一个很小的随机x轴向速度(这样看起来小球会在x轴上突然慢下来)
ball.vy-=
1.001
;
//y轴速度反向(这样看上去,会被反扔出去了)
}
}
init();