Prime Path(数学 + 素数筛选 + BFS + 邻接表)

Prime Path
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 10344   Accepted: 5907

Description

Prime Path(数学 + 素数筛选 + BFS + 邻接表)The ministers of the cabinet were quite upset by the message from the Chief of Security stating that they would all have to change the four-digit room numbers on their offices. 
— It is a matter of security to change such things every now and then, to keep the enemy in the dark. 
— But look, I have chosen my number 1033 for good reasons. I am the Prime minister, you know! 
— I know, so therefore your new number 8179 is also a prime. You will just have to paste four new digits over the four old ones on your office door. 
— No, it’s not that simple. Suppose that I change the first digit to an 8, then the number will read 8033 which is not a prime! 
— I see, being the prime minister you cannot stand having a non-prime number on your door even for a few seconds. 
— Correct! So I must invent a scheme for going from 1033 to 8179 by a path of prime numbers where only one digit is changed from one prime to the next prime. 

Now, the minister of finance, who had been eavesdropping, intervened. 
— No unnecessary expenditure, please! I happen to know that the price of a digit is one pound. 
— Hmm, in that case I need a computer program to minimize the cost. You don't know some very cheap software gurus, do you? 
— In fact, I do. You see, there is this programming contest going on... Help the prime minister to find the cheapest prime path between any two given four-digit primes! The first digit must be nonzero, of course. Here is a solution in the case above. 
1033
1733
3733
3739
3779
8779
8179
The cost of this solution is 6 pounds. Note that the digit 1 which got pasted over in step 2 can not be reused in the last step – a new 1 must be purchased.

Input

One line with a positive number: the number of test cases (at most 100). Then for each test case, one line with two numbers separated by a blank. Both numbers are four-digit primes (without leading zeros).

Output

One line for each case, either with a number stating the minimal cost or containing the word Impossible.

Sample Input

3
1033 8179
1373 8017
1033 1033

Sample Output

6
7
0

 

    题意:

    给出 N (<= 100)个 case,后每个 case 都给出两个四位数 A 和 B ,问最少需要将 A 经过多少次变化才能变成 B,每次变化只能变一位数,且每次得出来的数都必须为素数。

 

    思路:

    数学 + 搜索。首先先预处理好素数,再保存1000 ~ 9999之间的素数,并每个素数都对应着一个编号,并且转化成图,图用邻接表保存,每个数都有一个出度,指向的是与其相差一位的数。后给出 A 和 B 就是寻找 A 到 B 的最短路,故用 BFS 找最短路即可,若不预处理事先转化成素数图,在 BFS 中再一个个找的话,无疑会 TLE 的。

 

    AC:

#include <cstdio>
#include <queue>
#include <map>
#include <string.h>
#define MAX 10000
using namespace std;

typedef struct {
    int num,step;
}node;

node no[MAX];
int pri[MAX],pri_num[MAX];
int fir[MAX],next[MAX * 2],v[MAX * 2];
int vis[MAX];
int pri_sum,ind;

void add_edge(int f,int t) {
    v[ind] = t;
    next[ind] = fir[f];
    fir[f] = ind;
    ind++;
}

bool test(int a,int b) {
    int sum = 0;
    while(a && b) {
        if(a % 10 != b % 10)    sum++;
        if(sum >= 2)    return false;
        a /= 10;
        b /= 10;
    }

    return true;
}

void solve() {
    memset(pri,0,sizeof(pri));
    memset(fir,-1,sizeof(fir));
    pri_sum = 0;
    ind = 0;
    pri[1] = 1;
    for(int i = 2;i * i < MAX;i++) {
        if(pri[i]) continue;
        for(int j = i;j * i < MAX;j++)
            pri[i * j] = 1;
    }

    for(int i = 1000;i <= 9999;i++)
        if(!pri[i]) pri_num[pri_sum++] = i;

    for(int i = 0;i < pri_sum;i++)
        for(int j = i + 1;j < pri_sum;j++) {
            if(test(pri_num[i],pri_num[j])) {
                add_edge(i,j);
                add_edge(j,i);
            }
    }

}

int BFS(int st,int en) {
    if(st == en) return 0;
    queue<node> q;
    memset(vis,0,sizeof(vis));
    while(!q.empty()) q.pop();
    node now;
    now.num = st;now.step = 0;
    q.push(now);
    vis[st] = 1;

    while(!q.empty()) {
        now = q.front();q.pop();
        int num = now.num,step = now.step;

        //printf("%d %d\n",pri_num[num],step);

        for(int e = fir[num];e != -1;e = next[e]) {
            int vn = v[e];
            if(!vis[vn]) {
               node in;
               in.num = vn;in.step = step + 1;
               if(vn == en) return in.step;
               vis[vn] = 1;
               q.push(in);
            }
        }
    }

    return -1;
}

int main() {
    int n;
    solve();
    scanf("%d",&n);

    while(n--) {
        int s,e,res;
        scanf("%d%d",&s,&e);
        for(int i = 0;i < pri_sum;i++) {
            if(pri_num[i] == s) s = i;
            if(pri_num[i] == e) e = i;
        }
        res = BFS(s,e);
        if(res == -1)   printf("Impossible\n");
        else    printf("%d\n",res);
    }

    return 0;
}

 

 

 

你可能感兴趣的:(Path)