原帖地址:
http://www.docslib.com/html/JAVAwendang/2009/0703/28.html
遇到opencv,使用后,列一下。
(当然据说目前挺火的 绿*霸 用的就是这个)
opencv是个图形函数库,内容丰富。是Intel资助的开源计算机视觉库。
由一系列 C 函数和少量 C++ 类构成,实现了图像处理和计算机视觉方面的很多通用算法。
OpenCV 对非商业应用和商业应用都是免费(FREE)的。
相关网站:
http://www.opencv.org.cn
http://sourceforge.net/projects/opencvlibrary/
http://tech.groups.yahoo.com/group/OpenCV/
下载下来后,例子直接运行。
有些情况,比如提供的例子运行出错,需要重新编译。
windows下,vc6,重编译时有错误,是源程序里有个注释写错了位置,改了可以了,编译有顺序,一般提示...d文件找不到,顺藤摸瓜的找到源文件,编译就可以。
有个face检测的程序有意思:
可以检测人脸。
直接调用人脸检测函数。非常简单
人脸检测是2002年的论文?后来加入了侧脸检测?
#include "cv.h"
#include "highgui.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <math.h>
#include <float.h>
#include <limits.h>
#include <time.h>
#include <ctype.h>
#ifdef _EiC
#define WIN32
#endif
static CvMemStorage* storage = 0;
static CvHaarClassifierCascade* cascade = 0;
static CvHaarClassifierCascade* nested_cascade = 0;
int use_nested_cascade = 0;
void detect_and_draw( IplImage* image );
const char* cascade_name ="1.xml";
// "../../data/haarcascades/haarcascade_frontalface_alt_tree.xml";
/* "";haarcascade_profileface.xml*/
const char* nested_cascade_name ="2.xml";
// "../../data/haarcascades/haarcascade_eye_tree_eyeglasses.xml";
// "../../data/haarcascades/";
double scale = 1;
int main( int argc, char** argv )
{
CvCapture* capture = 0;
IplImage *frame, *frame_copy = 0;
IplImage *image = 0;
const char* scale_opt = "--scale=";
int scale_opt_len = (int)strlen(scale_opt);
const char* cascade_opt = "--cascade=";
int cascade_opt_len = (int)strlen(cascade_opt);
const char* nested_cascade_opt = "--nested-cascade";
int nested_cascade_opt_len = (int)strlen(nested_cascade_opt);
int i;
const char* input_name = 0;
input_name = argv[1];
cascade = (CvHaarClassifierCascade*)cvLoad( cascade_name, 0, 0, 0 );
if( !cascade )
{
fprintf( stderr, "ERROR: Could not load classifier cascade\n" );
fprintf( stderr,
"Usage: facedetect [--cascade=\"<cascade_path>\"]\n"
" [--nested-cascade[=\"nested_cascade_path\"]]\n"
" [--scale[=<image scale>\n"
" [filename|camera_index]\n" );
return -1;
}
if( !input_name || (isdigit(input_name[0]) && input_name[1] == '\0') )
capture = cvCaptureFromCAM( !input_name ? 0 : input_name[0] - '0' );
else if( input_name )
{
storage = cvCreateMemStorage(0); image = cvLoadImage( input_name, 1 );
if( !image )
capture = cvCaptureFromAVI( input_name );
}
else
image = cvLoadImage( "lena.jpg", 1 );
cvNamedWindow( "result", 1 );
if( capture )
{
for(;;)
{
if( !cvGrabFrame( capture ))
break;
frame = cvRetrieveFrame( capture );
if( !frame )
break;
if( !frame_copy )
frame_copy = cvCreateImage( cvSize(frame->width,frame->height),
IPL_DEPTH_8U, frame->nChannels );
if( frame->origin == IPL_ORIGIN_TL )
cvCopy( frame, frame_copy, 0 );
else
cvFlip( frame, frame_copy, 0 );
detect_and_draw( frame_copy );
if( cvWaitKey( 10 ) >= 0 )
goto _cleanup_;
}
cvWaitKey(0);
_cleanup_:
cvReleaseImage( &frame_copy );
cvReleaseCapture( &capture );
}
else
{
if( image )
{
detect_and_draw( image );
cvShowImage( "result", image );
cvWaitKey(0);
cvReleaseImage( &image );
}
else if( input_name )
{
/* assume it is a text file containing the
list of the image filenames to be processed - one per line */
FILE* f = fopen( input_name, "rt" );
if( f )
{
char buf[1000+1];
while( fgets( buf, 1000, f ) )
{
int len = (int)strlen(buf), c;
while( len > 0 && isspace(buf[len-1]) )
len--;
buf[len] = '\0';
printf( "file %s\n", buf );
image = cvLoadImage( buf, 1 );
if( image )
{
detect_and_draw( image );
c = cvWaitKey(0);
if( c == 27 || c == 'q' || c == 'Q' )
break;
cvReleaseImage( &image );
}
}
fclose(f);
}
}
}
cvDestroyWindow("result");
return 0;
}
void detect_and_draw( IplImage* img )
{
static CvScalar colors[] =
{
{{0,0,255}},
{{0,128,255}},
{{0,255,255}},
{{0,255,0}},
{{255,128,0}},
{{255,255,0}},
{{255,0,0}},
{{255,0,255}}
};
IplImage *gray, *small_img;
int i, j;
gray = cvCreateImage( cvSize(img->width,img->height), 8, 1 );
small_img = cvCreateImage( cvSize( cvRound (img->width/scale),
cvRound (img->height/scale)), 8, 1 );
cvCvtColor( img, gray, CV_BGR2GRAY );
cvResize( gray, small_img, CV_INTER_LINEAR );
cvEqualizeHist( small_img, small_img );
cvClearMemStorage( storage );
if( cascade )
{
double t = (double)cvGetTickCount();
CvSeq* faces = cvHaarDetectObjects( small_img, cascade, storage,
1.1, 2, 0
//|CV_HAAR_FIND_BIGGEST_OBJECT
//|CV_HAAR_DO_ROUGH_SEARCH
|CV_HAAR_DO_CANNY_PRUNING
//|CV_HAAR_SCALE_IMAGE
,
cvSize(30, 30) );
t = (double)cvGetTickCount() - t;
printf( "detection time = %gms\n", t/((double)cvGetTickFrequency()*1000.) );
for( i = 0; i < (faces ? faces->total : 0); i++ )
{
CvRect* r = (CvRect*)cvGetSeqElem( faces, i );
CvMat small_img_roi;
CvSeq* nested_objects;
CvPoint center;
CvScalar color = colors[i%8];
int radius;
center.x = cvRound((r->x + r->width*0.5)*scale);
center.y = cvRound((r->y + r->height*0.5)*scale);
radius = cvRound((r->width + r->height)*0.25*scale);
cvCircle( img, center, radius, color, 3, 8, 0 );
if( !nested_cascade )
continue;
cvGetSubRect( small_img, &small_img_roi, *r );
nested_objects = cvHaarDetectObjects( &small_img_roi, nested_cascade, storage,
1.1, 2, 0
//|CV_HAAR_FIND_BIGGEST_OBJECT
//|CV_HAAR_DO_ROUGH_SEARCH
//|CV_HAAR_DO_CANNY_PRUNING
//|CV_HAAR_SCALE_IMAGE
,
cvSize(0, 0) );
for( j = 0; j < (nested_objects ? nested_objects->total : 0); j++ )
{
CvRect* nr = (CvRect*)cvGetSeqElem( nested_objects, j );
center.x = cvRound((r->x + nr->x + nr->width*0.5)*scale);
center.y = cvRound((r->y + nr->y + nr->height*0.5)*scale);
radius = cvRound((nr->width + nr->height)*0.25*scale);
cvCircle( img, center, radius, color, 3, 8, 0 );
}
}
}
cvShowImage( "result", img );
cvReleaseImage( &gray );
cvReleaseImage( &small_img );
}
相关数据:
haarcascade_frontalface_alt1.xml等
是人脸检测用的人的眼睛,鼻子等数据。
当然可以改名或使用你自己的。
java使用opencv
用JNI2OpenCV.dll:
FaceDetection.java
class JNIOpenCV {
static {
System.loadLibrary("JNI2OpenCV");
}
public native int[] detectFace(int minFaceWidth, int minFaceHeight, String cascade, String filename);
}
public class FaceDetection {
private JNIOpenCV myJNIOpenCV;
private FaceDetection myFaceDetection;
public FaceDetection() {
myJNIOpenCV = new JNIOpenCV();
String filename = "5.jpg";
String cascade = "haarcascade_frontalface_default.xml";
int[] detectedFaces = myJNIOpenCV.detectFace(40, 40, cascade, filename);
int numFaces = detectedFaces.length / 4;
System.out.println("numFaces = " + numFaces);
for (int i = 0; i < numFaces; i++) {
System.out.println("Face " + i + ": " + detectedFaces[4 * i + 0] + " " + detectedFaces[4 * i + 1] + " " + detectedFaces[4 * i + 2] + " " + detectedFaces[4 * i + 3]);
}
}
public static void main(String args[]) {
FaceDetection myFaceDetection = new FaceDetection();
}
}
就可以在java中实现人脸识别了。
第一副图是c语言的人脸识别效果。
第二幅图是java版的效果。
相关文件备份:
http://www.namipan.com/d/a0d6b376810bf6b02c977435be95fb9d55a95fe4540d3c00
有运行不了的情况,是要重编译opencv
题外话:(当然据说目前挺火的绿*霸用的就是这个)
“从XFImage.xml可观察到,绿*霸使用了OpenCV的haar分类器进行人脸检测。绿*霸附带的cximage.dll、 CImage.dll、xcore.dll和Xcv.dll也来自OpenCV的库文件。都反映出绿*霸主要使用了OpenCV来进行图像方面的处理。绿*霸 也无视了OpenCV的BSD许可证。”
http://www.docslib.com/uploads/soft/200907/1_03181303.rar
(已上传的文件:Java调OpenCV.rar)