呼,这个也是一年多之前写的了……当时茶茶说起有没有办法处理BMW里的dat文件,然后我写了这程序,然后我们就真的开工了。真神奇,呵呵。
当时发给茶茶的聊天记录:
引用
http://www.ahcomic.com/bbs/thread-163398-1-1.html
这是前段时间正好写的关于Fatal/Fake的其中一个archive的解析.BMW的情况看起来跟Fatal/Fake差不多.可以参考下,拿里面的代码来修改.
http://yanesdkdotnet.sourceforge.jp/
如果我没猜错的话,BMW用的是这个引擎(或相关,yane2k1).但是这不重要,我们不一定需要知道原本的引擎是什么样的.
========================================================================================================================
头8个字节,地址0x00-0x07,属于file signature,读进来验证下是不是等于yanepkDx就可以了.
接着是一个DWORD(也就是32位整型,4个byte),那是文件个数,顺序是little-endian.0x2D意味着这个archive里有是45个文件.
然后后面接着的所谓的index.你会看到每个index的entry的长度都是固定的,长度为268(=0x10C).其中前面是留给"以\0结束的字符串"的空间,这里当然就是文件名啦.后面有3个little-endian的DWORD,分别是文件的地址/大小/大小.
提到index的每个entry里末尾的那3个DWORD,在我手上的这个文件里,后两个表示大小的值总是一样的.这意味着其中一个是原始大小而另一个是压缩后大小,只是现在我这文件的内容没有被压缩过而已.你或许会在另外几个dat文件里看到这两个表示大小的值会不一样.那么比较小的那个就是压缩后的大小.
index后就是文件内容了.把它们分离出来就行."分离"也就是把数据一个一个字节写到一个新文件里就可以了.反正我们也不追求什么速度啊空间啊效率什么的.你在index里得到了3个有用的值(这里我们只用到两个,因为不知道哪个"大小"是指压缩的.假设地址是offset,大小是origFileSize),那么Java就用RandomAccessFile设置文件指针到offset,然后读出origFileSize个字节,按照原本的文件名写出去就可以了...简单吧.
以后要打包回来的时候,只要反过来做一次事情就行...
嘛,当时也没仔细考察。这BMW很明显用的不是YaneSDK.NET而是更早的版本,是YaneSDK2还是YaneSDK3来着,我又忘了。不管了。
然后这个程序的使用方法:
引用
Usage: java Archiver [option] filename
options:
[e]xtract
[a]rchive
============================================
example:
Suppose data1.dat is in the same directory where this program is.
to extract files to current directory:
java Archiver e data1.dat
Suppose the files to be packed are in "data1" directory:
java Archiver a data1\
接下来是源代码。跟前面两帖(
这里和
这里)一样,因为用了
BlowfishJ的BinConverter.java,所以以下代码以
LGPL许可证发布。
不过说真的,这连续3帖里的代码都是当时太贪图写起来方便而弄得乱七八糟的……结构太糟糕了。或许还是应该把一些结构自己的IO给封装起来的。叹气。
Archiver.java:
/*
* @(#)Archiver.java 2007/03/23
* Written by rednaxela / FX
*/
import java.io.*;
import java.util.*;
/**
* Demonstrating archive operations on *.dat files as seen in BattleMoonWars.
*/
public class Archiver {
static final byte[] SIGNATURE = {
(byte)'y', (byte)'a', (byte)'n', (byte)'e',
(byte)'p', (byte)'k', (byte)'D', (byte)'x',
};
static final int ENTRY_LENGTH = 268;
static final int MAX_FILENAME_LENGTH = 256;
static final int OFFSET_OFS = 256;
static final int LENGTH_OFS = 260;
static final int COMPRESSED_LENGTH_OFS = 264; // ??
static final String USAGE = "Usage: java Archiver [option] filename\n"
+ "options:\n"
+ "[e]xtract\n"
+ "[a]rchive";
/**
* the application entry point
* @param args (command line) parameters
*/
public static void main(String args[]) throws Exception {
// check command line arguments
if (args.length != 2) error(USAGE);
if ("e".equals(args[0].trim())) { // extract files from archive
String filename = args[1].trim();
if (filename.length() == 0) error("2nd argument not exist.");
extractFiles(filename);
} else if ("a".equals(args[0].trim())) { // pack files into archive
String dirname = args[1].trim();
if (dirname.length() == 0) error("2nd argument not exist.");
packFiles(dirname);
} else error(USAGE);
}
private static void extractFiles(String filename) throws Exception {
// open source archive
File arc = new File(filename);
if (!arc.exists()) error("Archive " + filename + " doesn't exist");
long contentOfs = 0L;
IndexEntry[] indexEntries = null;
FileInputStream fis = new FileInputStream(arc);
DataInputStream dis = new DataInputStream(fis);
// match archive SIGNATURE
byte[] sig = new byte[8];
dis.read(sig);
if (!Arrays.equals(SIGNATURE, sig)) error("Archive file not supported.");
// get file count
int fileCount = reverseEndian(dis.readInt());
System.out.println("Files in archive: " + fileCount);
indexEntries = new IndexEntry[fileCount];
// read index entries
byte[] entryBuffer = new byte[ENTRY_LENGTH];
for (int i = 0; i < fileCount; ++i) {
IndexEntry entry = new IndexEntry();
dis.read(entryBuffer);
ByteArrayInputStream bais =
new ByteArrayInputStream(entryBuffer);
String name = readCString(bais);
entry.setFilename(name);
System.err.print("File \"" + entry.getFilename() + "\" : ");
int offset = BinConverter.byteArrayToIntLE(entryBuffer, OFFSET_OFS);
entry.setOffset(offset);
System.err.print(" at relative offset 0x" + Integer.toHexString(entry.getOffset()).toUpperCase());
int length = BinConverter.byteArrayToIntLE(entryBuffer, LENGTH_OFS);
entry.setLength(length);
System.err.print(" size: 0x" + Integer.toHexString(entry.getLength()).toUpperCase());
int compressedLength = BinConverter.byteArrayToIntLE(entryBuffer, COMPRESSED_LENGTH_OFS);
entry.setCompressedLength(compressedLength);
System.err.println(" csize: 0x" + Integer.toHexString(entry.getCompressedLength()).toUpperCase());
if (length > compressedLength) {
System.err.println("possibly compressed");
System.exit(1);
} else if (length < compressedLength) {
System.err.println("possibly compressed, got length/compressedLength wrong...");
System.exit(1);
}
indexEntries[i] = entry;
}
// extract files
for (IndexEntry entry : indexEntries) {
// data correctness check - this support ordered file archive only.
// to support out-of-order archives, use RandomAccessFile instead.
if (fis.getChannel().position() != entry.getOffset())
error("Bad file content order at "
+ entry.getFilename() + " 0x"
+ Integer.toHexString((int)(fis.getChannel().position() - contentOfs)));
File outfile = new File("./" + entry.getFilename());
File parentDir = outfile.getParentFile();
if (!parentDir.exists()) parentDir.mkdirs();
BufferedOutputStream bos =
new BufferedOutputStream(new FileOutputStream(outfile), 0x7FFFFF);
int remainder = 0; // keep track of the amount of remaining bytes
int length = entry.getLength();
while (fis.available() != 0 && remainder != length) {
bos.write(fis.read());
++remainder;
}
bos.flush();
bos.close();
}
fis.close();
}
private static void packFiles(String dirname) throws Exception {
// open source directory
File dir = new File(dirname);
if (!dir.exists()) error("Directory " + dirname + " doesn't exist");
else if (!dir.isDirectory()) error(dirname + " is not a valid directory.");
// use a ArrayList to store the index entries
ArrayList<IndexEntry> indexEntries = new ArrayList<IndexEntry>();
// make up index data
buildIndex(dir, indexEntries, "");
// calculate the offset values for each file record
int runningOfs = SIGNATURE.length + 4 + ENTRY_LENGTH * indexEntries.size();
for (IndexEntry entry : indexEntries) {
entry.setOffset(runningOfs);
runningOfs += entry.getLength();
}
// write out archive SIGNATURE and file count
DataOutputStream dos =
new DataOutputStream(
new BufferedOutputStream(
new FileOutputStream(dir.getName() + ".dat")));
dos.write(SIGNATURE);
dos.writeInt(reverseEndian(indexEntries.size()));
// write out the file index
for (IndexEntry entry : indexEntries) {
System.err.println("Adding file " + entry.getFilename()
+ " size: 0x" + Integer.toHexString(entry.getLength()).toUpperCase()
+ " at relative offset: 0x" + Integer.toHexString(entry.getOffset()).toUpperCase());
int zeroCount = MAX_FILENAME_LENGTH - entry.getFilename().length();
dos.write(entry.getFilename().getBytes());
for (int i = 0; i < zeroCount; ++i)
dos.write(0);
dos.writeInt(reverseEndian(entry.getOffset()));
dos.writeInt(reverseEndian(entry.getLength()));
dos.writeInt(reverseEndian(entry.getLength())); // NOTE! Does NOT support compressed files at current time being
}
// write out each file's content
for(IndexEntry entry : indexEntries) {
BufferedInputStream bis = new BufferedInputStream(new FileInputStream(dir.getAbsolutePath() + "\\" + entry.getFilename()));
while (bis.available() != 0)
dos.writeByte(bis.read());
bis.close();
}
dos.flush();
dos.close();
}
private static int reverseEndian(int i) {
byte[] bytes = new byte[4];
bytes[0] = (byte)(i >>> 24);
bytes[1] = (byte)(i >>> 16);
bytes[2] = (byte)(i >>> 8 );
bytes[3] = (byte) i;
i = bytes[3] << 24;
i |= (bytes[2] << 16 ) & 0x0ff0000;
i |= (bytes[1] << 8 ) & 0x000ff00;
i |= bytes[0] & 0x00000ff;
return i;
}
private static int reverseEndian(short s) {
byte[] bytes = new byte[2];
bytes[0] = (byte)(s >>> 8 );
bytes[1] = (byte) s;
int i = 0;
i |= (bytes[1] << 8 ) & 0x000ff00;
i |= bytes[0] & 0x00000ff;
return i;
}
private static void error(String cause) {
System.err.println("Error " + cause);
System.exit(1);
}
private static String readCString(InputStream in) throws IOException {
ArrayList<Byte> str = new ArrayList<Byte>();
byte current = (byte)in.read();
while (current != (byte)0x00) {
str.add(current);
current = (byte)in.read();
}
byte[] temp = new byte[str.size()];
for (int i = 0; i < temp.length; ++i) {
temp[i] = str.get(i);
}
return new String(temp);
}
private static void buildIndex(File dir, ArrayList<IndexEntry> index, String parent) {
// list the designated directory
File[] files = dir.listFiles();
// traverse dir
for (int i = 0; i < files.length; ++i) {
if (files[i].isDirectory()) { // current file is a directory
// assumes that subdir depth doesn't exceed one
buildIndex(files[i], index, parent+files[i].getName()+"\\");
} else { // current file is a normal file
IndexEntry entry = new IndexEntry();
entry.setFilename(parent+files[i].getName());
entry.setLength((int)files[i].length());
index.add(entry);
}
}
}
}
IndexEntry.java:
/*
* @(#)IndexEntry.java 2007/03/23
* Written by rednaxela / FX
*/
public class IndexEntry {
private String filename;
private int length;
private int offset;
private int compressedLength; // TODO not yet implemented - CHECK!
/**
* @return the filename
*/
public String getFilename() {
return filename;
}
/**
* @param filename the filename to set
*/
public void setFilename(String filename) {
this.filename = filename;
}
/**
* @return the length
*/
public int getLength() {
return length;
}
/**
* @param length the length to set
*/
public void setLength(int length) {
this.length = length;
}
/**
* @return the offset
*/
public int getOffset() {
return offset;
}
/**
* @param offset the offset to set
*/
public void setOffset(int offset) {
this.offset = offset;
}
/**
* @return the compressedLength
*/
public int getCompressedLength() {
return compressedLength;
}
/**
* @param offset the compressedLength to set
*/
public void setCompressedLength(int compressedLength) {
this.compressedLength = compressedLength;
}
}
BinConverter.java:
/*
* @(#)BinConverter.java
*/
/**
* Some helper routines for data conversion, all data is treated in network
* byte order.
*/
public class BinConverter
{
/**
* Gets bytes from an array into an integer, in big-endian.
* @param buf where to get the bytes
* @param ofs index from where to read the data
* @return the 32bit integer
*/
public final static int byteArrayToIntBE(
byte[] buf,
int ofs)
{
return (buf[ofs ] << 24)
| ((buf[ofs + 1] & 0x0ff) << 16)
| ((buf[ofs + 2] & 0x0ff) << 8 )
| ( buf[ofs + 3] & 0x0ff);
}
/**
* Gets bytes from an array into an integer, in little-endian.
* @param buf where to get the bytes
* @param ofs index from where to read the data
* @return the 32bit integer
*/
public final static int byteArrayToIntLE(
byte[] buf,
int ofs)
{
return (buf[ofs + 3] << 24)
| ((buf[ofs + 2] & 0x0ff) << 16)
| ((buf[ofs + 1] & 0x0ff) << 8 )
| ( buf[ofs ] & 0x0ff);
}
///////////////////////////////////////////////////////////////////////////
/**
* Converts an integer to bytes in big-endian, which are put into an array.
* @param value the 32bit integer to convert
* @param buf the target buf
* @param ofs where to place the bytes in the buf
*/
public final static void intToByteArrayBE(
int value,
byte[] buf,
int ofs)
{
buf[ofs ] = (byte)((value >>> 24) & 0x0ff);
buf[ofs + 1] = (byte)((value >>> 16) & 0x0ff);
buf[ofs + 2] = (byte)((value >>> 8 ) & 0x0ff);
buf[ofs + 3] = (byte) value;
}
/**
* Converts an integer to bytes in little-endian, which are put into an array.
* @param value the 32bit integer to convert
* @param buf the target buf
* @param ofs where to place the bytes in the buf
*/
public final static void intToByteArrayLE(
int value,
byte[] buf,
int ofs)
{
buf[ofs + 3] = (byte)((value >>> 24) & 0x0ff);
buf[ofs + 2] = (byte)((value >>> 16) & 0x0ff);
buf[ofs + 1] = (byte)((value >>> 8 ) & 0x0ff);
buf[ofs ] = (byte) value;
}
///////////////////////////////////////////////////////////////////////////
/**
* Gets bytes from an array into a long.
* @param buf where to get the bytes
* @param ofs index from where to read the data
* @return the 64bit integer
*/
public final static long byteArrayToLong(
byte[] buf,
int ofs)
{
// Looks more complex - but it is faster (at least on 32bit platforms).
return
((long)(( buf[ofs ] << 24) |
((buf[ofs + 1] & 0x0ff) << 16) |
((buf[ofs + 2] & 0x0ff) << 8 ) |
( buf[ofs + 3] & 0x0ff )) << 32) |
((long)(( buf[ofs + 4] << 24) |
((buf[ofs + 5] & 0x0ff) << 16) |
((buf[ofs + 6] & 0x0ff) << 8 ) |
( buf[ofs + 7] & 0x0ff )) & 0x0ffffffffL);
}
///////////////////////////////////////////////////////////////////////////
/**
* Converts a long to bytes, which are put into an array.
* @param value the 64bit integer to convert
* @param buf the target buf
* @param ofs where to place the bytes in the buf
*/
public final static void longToByteArray(
long value,
byte[] buf,
int ofs)
{
int tmp = (int)(value >>> 32);
buf[ofs ] = (byte) (tmp >>> 24);
buf[ofs + 1] = (byte)((tmp >>> 16) & 0x0ff);
buf[ofs + 2] = (byte)((tmp >>> 8 ) & 0x0ff);
buf[ofs + 3] = (byte) tmp;
tmp = (int)value;
buf[ofs + 4] = (byte) (tmp >>> 24);
buf[ofs + 5] = (byte)((tmp >>> 16) & 0x0ff);
buf[ofs + 6] = (byte)((tmp >>> 8 ) & 0x0ff);
buf[ofs + 7] = (byte) tmp;
}
///////////////////////////////////////////////////////////////////////////
/**
* Converts values from an integer array to a long.
* @param buf where to get the bytes
* @param ofs index from where to read the data
* @return the 64bit integer
*/
public final static long intArrayToLong(
int[] buf,
int ofs)
{
return (((long) buf[ofs ]) << 32) |
(((long) buf[ofs + 1]) & 0x0ffffffffL);
}
///////////////////////////////////////////////////////////////////////////
/**
* Converts a long to integers which are put into an array.
* @param value the 64bit integer to convert
* @param buf the target buf
* @param ofs where to place the bytes in the buf
*/
public final static void longToIntArray(
long value,
int[] buf,
int ofs)
{
buf[ofs ] = (int)(value >>> 32);
buf[ofs + 1] = (int) value;
}
///////////////////////////////////////////////////////////////////////////
/**
* Makes a long from two integers (treated unsigned).
* @param lo lower 32bits
* @param hi higher 32bits
* @return the built long
*/
public final static long makeLong(
int lo,
int hi)
{
return (((long) hi << 32) |
((long) lo & 0x00000000ffffffffL));
}
///////////////////////////////////////////////////////////////////////////
/**
* Gets the lower 32 bits of a long.
* @param val the long integer
* @return lower 32 bits
*/
public final static int longLo32(
long val)
{
return (int)val;
}
///////////////////////////////////////////////////////////////////////////
/**
* Gets the higher 32 bits of a long.
* @param val the long integer
* @return higher 32 bits
*/
public final static int longHi32(
long val)
{
return (int)(val >>> 32);
}
///////////////////////////////////////////////////////////////////////////
// our table for hex conversion
final static char[] HEXTAB =
{
'0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
};
/**
* Converts a byte array to a hex string.
* @param data the byte array
* @return the hex string
*/
public final static String bytesToHexStr(
byte[] data)
{
return bytesToHexStr(data, 0, data.length);
}
///////////////////////////////////////////////////////////////////////////
/**
* Converts a byte array to a hex string.
* @param data the byte array
* @param ofs start index where to get the bytes
* @param len number of bytes to convert
* @return the hex string
*/
public final static String bytesToHexStr(
byte[] data,
int ofs,
int len)
{
int pos, c;
StringBuffer sbuf;
sbuf = new StringBuffer();
sbuf.setLength(len << 1);
pos = 0;
c = ofs + len;
while (ofs < c)
{
sbuf.setCharAt(pos++, HEXTAB[(data[ofs ] >> 4) & 0x0f]);
sbuf.setCharAt(pos++, HEXTAB[ data[ofs++] & 0x0f]);
}
return sbuf.toString();
}
///////////////////////////////////////////////////////////////////////////
/**
* Converts a hex string back into a byte array (invalid codes will be
* skipped).
* @param hex hex string
* @param data the target array
* @param srcofs from which character in the string the conversion should
* begin, remember that (nSrcPos modulo 2) should equals 0 normally
* @param dstofs to store the bytes from which position in the array
* @param len number of bytes to extract
* @return number of extracted bytes
*/
public final static int hexStrToBytes(
String hex,
byte[] data,
int srcofs,
int dstofs,
int len)
{
int i, j, strlen, avail_bytes, dstofs_bak;
byte abyte;
boolean convertOK;
// check for correct ranges
strlen = hex.length();
avail_bytes = (strlen - srcofs) >> 1;
if (avail_bytes < len)
{
len = avail_bytes;
}
int nOutputCapacity = data.length - dstofs;
if (len > nOutputCapacity)
{
len = nOutputCapacity;
}
// convert now
dstofs_bak = dstofs;
for (i = 0; i < len; i++)
{
abyte = 0;
convertOK = true;
for (j = 0; j < 2; j++)
{
abyte <<= 4;
char cActChar = hex.charAt(srcofs++);
if ((cActChar >= 'a') && (cActChar <= 'f'))
{
abyte |= (byte) (cActChar - 'a') + 10;
}
else
{
if ((cActChar >= '0') && (cActChar <= '9'))
{
abyte |= (byte) (cActChar - '0');
}
else
{
convertOK = false;
}
}
}
if (convertOK)
{
data[dstofs++] = abyte;
}
}
return (dstofs - dstofs_bak);
}
///////////////////////////////////////////////////////////////////////////
/**
* Converts a byte array into a Unicode string.
* @param data the byte array
* @param ofs where to begin the conversion
* @param len number of bytes to handle
* @return the string
*/
public final static String byteArrayToStr(
byte[] data,
int ofs,
int len)
{
int avail_capacity, sbuf_pos;
StringBuffer sbuf;
// we need two bytes for every character
len &= ~1;
// enough bytes in the buf?
avail_capacity = data.length - ofs;
if (avail_capacity < len)
{
len = avail_capacity;
}
sbuf = new StringBuffer();
sbuf.setLength(len >> 1);
sbuf_pos = 0;
while (0 < len)
{
sbuf.setCharAt(
sbuf_pos++,
(char)((data[ofs ] << 8 )
| (data[ofs + 1] & 0x0ff)));
ofs += 2;
len -= 2;
}
return sbuf.toString();
}
}