Java 虚拟机工具接口(Java Virtual Machine Tool Interface,JVMTI)提供了一种编程接口,允许软件开发人员创建软件代理以监视和控制 Java 编程语言应用程序。JVMTI 是 Java 2 Software Development Kit (SDK), Standard Edition, 版本 1.5.0 中的一种新增功能。它取代了 Java Virtual Machine Profiling Interface (JVMPI),从版本 1.1 起即作为 Java 2 SDK 的一种实验功能包括在内。在 JSR-163 中对 JVMTI 进行了有关说明。
本文阐述如何使用 JVMTI 创建 Java 应用程序的调试和分析工具。这种工具(也称作代理)在应用程序中发生事件时,能够使用该接口提供的功能对事件通知进行注册,并查询和控制该应用程序。这里提供了 JVMTI 的文档资料。JVMTI 代理对于调试和调优应用程序十分有用。它可以对应用程序的各个方面予以说明,如内存分配情况、CPU 利用情况及锁争夺情况。
尽管 JVMPI 现在仍处于实验阶段,很多 Java 技术开发人员已经在使用它了,而且已经把它应用到多种市场上提供的 Java 应用程序 Profiler。 请注意,极力鼓励开发人员使用 JVMTI 而不使用 JVMPI。JVMPI 在不久的将来将被废止。
JVMTI 在多个方面改进了 JVMPI 的功能和性能。例如:
在本文的以下部分,我们介绍一个简单代理,它使用 JVMTI 函数从 Java 应用程序提取信息。 代理的编写必须使用本地代码。这里给出的示例代理是使用 C 语言编写的。您可以于此下载完整的示例代理代码。下面几段介绍如何初始化一个代理,以及代理如何使用 JVMTI 函数提取关于 Java 应用程序的信息,以及如何编译和运行代理。此示例代码和编译步骤特定于 UNIX 环境,但是经过修改后也可用于 Windows。这里介绍的代理可用于在任何 Java 应用程序中分析线程和确定 JVM 内存使用情况。
这里包含一个用 Java 语言编写的简单程序,称作 SimpleThread.java,并可从这里下载。我们使用 ThreadSample.java 演示此代理的预期输出。
JVMTI 的功能很多,在此无法详述;但本文中的代码可以提供一个出发点,让您去开发符合自己特定需求的分析工具。
代理初始化
本节介绍用于初始化代理的代码。首先,代理必须包括 jvmti.h
文件,语句为 #include <jvmti.h>
。
另外,代理必须包含一个名为 Agent_OnLoad
的函数,加载库时要调用这一函数。Agent_OnLoad
函数用于在初始化 Java virtual machine (JVM) 之前设置所需的功能。Agent_OnLoad
签名如下所示:
JNIEXPORT jint JNICALL Agent_OnLoad(JavaVM *jvm, char *options, void *reserved) { ... /* We return JNI_OK to signify success */ return JNI_OK; } |
<!-- END VCD7 CODE SAMPLE COMPONENT -->
在我们的示例代码中,我们必须为将要使用的 JVMTI 函数和事件启用多种功能。一般情况下均需(在某些情况下必须)将这些功能添加到 Agent_OnLoad
函数中。有关每种函数或事件所需的功能的说明,参见 Java 虚拟机工具接口页。例如,要使用 InterruptThread
函数,can_signal_thread
功能必须为 true。我们把示例所需的全部功能都设置为 true,然后使用 AddCapabilities
函数将它们添加到 JVMTI 环境中:
static jvmtiEnv *jvmti = NULL; static jvmtiCapabilities capa; jvmtiError error; ... (void)memset(&capa, 0, sizeof(jvmtiCapabilities)); capa.can_signal_thread = 1; capa.can_get_owned_monitor_info = 1; capa.can_generate_method_entry_events = 1; capa.can_generate_exception_events = 1; capa.can_generate_vm_object_alloc_events = 1; capa.can_tag_objects = 1; error = (*jvmti)->AddCapabilities(jvmti, &capa); check_jvmti_error(jvmti, error, "Unable to get necessary JVMTI capabilities."); ... |
此外,Agent_OnLoad
函数通常用于注册事件通知。在此示例中,我们在使用 SetEventNotificationMode
函数的 Agent_OnLoad
中启用了多个事件,如 VM Initialization Event、VM Death Event 和 VM Object Allocation, 如下所示:
error = (*jvmti)->SetEventNotificationMode (jvmti, JVMTI_ENABLE, JVMTI_EVENT_VM_INIT, (jthread)NULL); error = (*jvmti)->SetEventNotificationMode (jvmti, JVMTI_ENABLE, JVMTI_EVENT_VM_DEATH, (jthread)NULL); error = (*jvmti)->SetEventNotificationMode (jvmti, JVMTI_ENABLE, JVMTI_EVENT_VM_OBJECT_ALLOC, (jthread)NULL); check_jvmti_error(jvmti, error, "Cannot set event notification"); ... |
注意,在此示例中,NULL 是作为第三个参数传递的,它可以全局地启用事件通知。如果需要,可以为某个特殊线程启用或禁用某些事件。
我们为其注册的每个事件还都必须具有一个指定的回调函数,当该事件发生时将调用它。例如,如果一个 Exception
类型的 JVMTI Event 发生,示例代理会将其发送到回调方法 callbackException()
中。
使用 jvmtiEventCallbacks
结构和 SetEventCallbacks
函数可以完成此任务:
jvmtiEventCallbacks callbacks; ... (void)memset(&callbacks, 0, sizeof(callbacks)); callbacks.VMInit = &callbackVMInit; /* JVMTI_EVENT_VM_INIT */ callbacks.VMDeath = &callbackVMDeath; /* JVMTI_EVENT_VM_DEATH */ callbacks.Exception = &callbackException;/* JVMTI_EVENT_EXCEPTION */ callbacks.VMObjectAlloc = &callbackVMObjectAlloc;/* JVMTI_EVENT_VM_OBJECT_ALLOC */ error = (*jvmti)->SetEventCallbacks(jvmti, &callbacks,(jint)sizeof(callbacks)); check_jvmti_error(jvmti, error, "Cannot set jvmti callbacks"); ... |
我们还将设置一个全局代理数据区域以在整个代码中使用。
<!-- BEGIN VCD7 CODE SAMPLE COMPONENT --> /* Global agent data structure */ typedef struct { /* JVMTI Environment */ jvmtiEnv *jvmti; jboolean vm_is_started; /* Data access Lock */ jrawMonitorID lock; } GlobalAgentData; static GlobalAgentData *gdata; |
在 Agent_OnLoad
函数中,我们执行以下设置:
/* Setup initial global agent data area * Use of static/extern data should be handled carefully here. * We need to make sure that we are able to cleanup after * ourselves so anything allocated in this library needs to be * freed in the Agent_OnUnload() function. */ static GlobalAgentData data; (void)memset((void*)&data, 0, sizeof(data)); gdata = &data; ... /* Here we save the jvmtiEnv* for Agent_OnUnload(). */ gdata->jvmti = jvmti; ... |
<!-- END VCD7 CODE SAMPLE COMPONENT -->
我们在 Agent_OnLoad()
中创建一个原始监视器,然后把代码 VM_INIT、VM_DEATH
和 EXCEPTION
包装于 JVMTI RawMonitorEnter()
和 RawMonitorExit()
接口 。
/* Here we create a raw monitor for our use in this agent to * protect critical sections of code. */ error = (*jvmti)->CreateRawMonitor(jvmti, "agent data", &(gdata->lock)); /* Enter a critical section by doing a JVMTI Raw Monitor Enter */ static void enter_critical_section(jvmtiEnv *jvmti) { jvmtiError error; error = (*jvmti)->RawMonitorEnter(jvmti, gdata->lock); check_jvmti_error(jvmti, error, "Cannot enter with raw monitor"); } /* Exit a critical section by doing a JVMTI Raw Monitor Exit */ static void exit_critical_section(jvmtiEnv *jvmti) { jvmtiError error; error = (*jvmti)->RawMonitorExit(jvmti, gdata->lock); check_jvmti_error(jvmti, error, "Cannot exit with raw monitor"); } |
卸载代理时,VM
将调用 Agent_OnUnload
。此函数用于清理在 Agent_OnLoad
期间分配的资源。
/* Agent_OnUnload: This is called immediately before the shared library * is unloaded. This is the last code executed. */ JNIEXPORT void JNICALL Agent_OnUnload(JavaVM *vm) { /* Make sure all malloc/calloc/strdup space is freed */ } |
使用 JVMTI 分析线程
本节介绍如何获取关于在 JVM 中运行的用户线程的信息。如前所述,启动 JVM 时,JVMTI 代理库中的启动函数 Agent_OnLoad
将被调用。在 VM 初始化过程中,JVMTI_EVENT_VM_INIT
类型的 JVMTI Event 将生成并被发送到代理代码的 callbackVMInit
例程中。一旦 VM 初始化事件被接收(即 调用VMInit
回调),代理即可结束其初始化。现在,此代理可以自由调用任何 Java Native Interface (JNI) 或 JVMTI 函数。此时,我们已经处于活动阶段,将启用本 VMInit 回调例程中的 Exception
事件(JVMTI_EVENT_EXCEPTION
)。
error = (*jvmti)->SetEventNotificationMode (jvmti, JVMTI_ENABLE, JVMTI_EVENT_EXCEPTION, (jthread)NULL); |
无论何时,只要在 Java
编程语言方法中首次探测到异常,
就会生成 Exception
事件。此异常可能由 Java 编程语言抛出,也可能由本地方法抛出;但是如果由本地方法抛出,直到 Java 编程语言方法首次发现此异常时该事件才会生成。如果异常已被处理并清除,则异常事件不会生成。
出于演示目的,下面给出了所用的示例 Java 应用程序。主线程创建了 5 个线程,这 5 个线程退出前各自抛出一个异常。一旦启动 JVM,JVMTI_EVENT_VM_INIT
将生成并被发送到代理代码中进行处理,因为我们已经在代理代码中启用了 VMInit
和 Exception
事件。随后,当 Java 线程抛出一个异常时,JVMTI_EVENT_EXCEPTION
将被发送到代理代码中。然后,代理代码 会分析此线程信息并显示当前线程名、它所属的线程组、此线程所拥有的监视器、线程状态、线程堆栈跟踪及 JVM 中的所有用户线程。
public class SimpleThread { static MyThread t; public static void main(String args[]) throws Throwable{ t = new MyThread(); System.out.println("Creating and running 10 threads..."); for(int i = 0; i < 5; i++) { Thread thr = new Thread(t,"MyThread"+i); thr.start(); try { thr.join(); } catch (Throwable t) { } } } } class MyThread implements Runnable { Thread t; public MyThread() { } public void run() { /* NO-OP */ try { "a".getBytes("ASCII"); throwException(); Thread.sleep(1000); } catch (java.lang.InterruptedException e){ e.printStackTrace(); } catch (Throwable t) { } } public void throwException() throws Throwable{ throw new Exception("Thread Exception from MyThread"); } } |
我们来看一下 Java 应用程序内部抛出一个异常时 JVMTI 代理代码的执行情况。
<!-- BEGIN VCD7 CODE SAMPLE COMPONENT --> throw new Exception("Thread Exception from MyThread"); |
JVMTI 异常事件生成后将被发送到代理代码的 Exception
回调例程中。代理必须添加 can_generate_exception_events
功能才能启用异常事件。我们使用 JVMTI GetMethodName
接口来显示生成异常的方法名和例程签名。
err3 = (*jvmti)->GetMethodName(jvmti, method, &name, &sig, &gsig); printf("Exception in Method:%s%s\n", name, sig); |
我们使用 JVMTI GetThreadInfo
和 GetThreadGroupInfo
接口来显示当前线程和组详细信息。
err = (*jvmti)->GetThreadInfo(jvmti, thr, &info); if (err == JVMTI_ERROR_NONE) { err1 = (*jvmti)->GetThreadGroupInfo(jvmti,info.thread_group, &groupInfo); ... if ((err == JVMTI_ERROR_NONE) && (err1 == JVMTI_ERROR_NONE )) { printf("Got Exception event, Current Thread is : %s and Thread Group is: %s\n", ((info.name==NULL) ? "" : info.name), groupInfo.name); } } |
这将在您的终端上产生以下输出:
Got Exception event, Current Thread is : MyThread0 and Thread Group is: main
使用 JVMTI GetOwnedMonitorInfo
接口可以获取关于指定线程所拥有的监视器的信息。此函数 不要求挂起线程。
err = (*jvmti)->GetOwnedMonitorInfo(jvmti, thr, νm_monitors, &arr_monitors); printf("Number of Monitors returned : %d\n", num_monitors); |
使用 JVMTI GetThreadState
接口可以获取线程的状态信息。
线程状态可以为以下值之一:
err = (*jvmti)->GetThreadState(jvmti, thr, &thr_st_ptr); if ( thr_st_ptr & JVMTI_THREAD_STATE_RUNNABLE ) { printf("Thread: %s is Runnable\n", ((info.name==NULL) ? "" : info.name)); flag = 1; } |
JVMTI 函数 GetAllThreads
用于显示 JVM 已知的所有活动线程。这些线程是关联到 VM 的 Java 编程语言线程。
以下代码对此进行了说明:
<!-- BEGIN VCD7 CODE SAMPLE COMPONENT --> /* Get All Threads */ err = (*jvmti)->GetAllThreads(jvmti, &thr_count, &thr_ptr); if (err != JVMTI_ERROR_NONE) { printf("(GetAllThreads) Error expected: %d, got: %d\n", JVMTI_ERROR_NONE, err); describe(err); printf("\n"); } if (err == JVMTI_ERROR_NONE && thr_count >= 1) { int i = 0; printf("Thread Count: %d\n", thr_count); for ( i=0; i < thr_count; i++) { /* Make sure the stack variables are garbage free */ (void)memset(&info1,0, sizeof(info1)); err1 = (*jvmti)->GetThreadInfo(jvmti, thr_ptr[i], &info1); if (err1 != JVMTI_ERROR_NONE) { printf("(GetThreadInfo) Error expected: %d, got: %d\n", JVMTI_ERROR_NONE, err1); describe(err1); printf("\n"); } printf("Running Thread#%d: %s, Priority: %d, context class loader:%s\n", i+1,info1.name, info1.priority,(info1.context_class_loader == NULL ? ": NULL" : "Not Null")); /* Every string allocated by JVMTI needs to be freed */ err2 = (*jvmti)->Deallocate(jvmti, (void*)info1.name); if (err2 != JVMTI_ERROR_NONE) { printf("(GetThreadInfo) Error expected: %d, got: %d\n", JVMTI_ERROR_NONE, err2); describe(err2); printf("\n"); } } } |
这将在您的终端上产生以下输出:
<!-- BEGIN VCD7 CODE SAMPLE COMPONENT --> Thread Count: 5 Running Thread#1: MyThread4, Priority: 5, context class loader:Not Null Running Thread#2: Signal Dispatcher, Priority: 10, context class loader:Not Null Running Thread#3: Finalizer, Priority: 8, context class loader:: NULL Running Thread#4: Reference Handler, Priority: 10, context class loader:: NULL Running Thread#5: main, Priority: 5, context class loader:Not Null |
JVMTI 接口 GetStackTrace
可用于获取关于线程堆栈的信息。如果 max_count
小于堆栈的深度,最深框架的 max_count
数将返回,否则返回整个堆栈。调用此函数无需挂起线程。
下例产生至多 5 个最深框架。如果存在任何框架,则还将输出当前执行的方法名。
<!-- BEGIN VCD7 CODE SAMPLE COMPONENT --> /* Get Stack Trace */ err = (*jvmti)->GetStackTrace(jvmti, thr, 0, 5, &frames, &count); if (err != JVMTI_ERROR_NONE) { printf("(GetThreadInfo) Error expected: %d, got: %d\n", JVMTI_ERROR_NONE, err); describe(err); printf("\n"); } printf("Number of records filled: %d\n", count); if (err == JVMTI_ERROR_NONE && count >=1) { char *methodName; methodName = "yet_to_call()"; char *declaringClassName; jclass declaring_class; int i=0; printf("Exception Stack Trace\n"); printf("=====================\n"); printf("Stack Trace Depth: %d\n", count); for ( i=0; i < count; i++) { err = (*jvmti)->GetMethodName (jvmti, frames[i].method, &methodName, NULL, NULL); if (err == JVMTI_ERROR_NONE) { err = (*jvmti)->GetMethodDeclaringClass(jvmti, frames[i].method, &declaring_class); err = (*jvmti)->GetClassSignature(jvmti, declaring_class, &declaringClassName, NULL); if (err == JVMTI_ERROR_NONE) { printf("at method %s() in class %s\n", methodName, declaringClassName); } } } } |
这将使您的终端产生以下输出:
<!-- BEGIN VCD7 CODE SAMPLE COMPONENT --> Number of records filled: 3 Thread Stack Trace ===================== Stack Trace Depth: 3 at method throwException() in class LmyThread; at method run() in class LMyThread; at method run() in class Ljava/lang/Thread; |
使用 JVMTI 分析堆
本节介绍如何获取关于使用堆的信息的示例代码。例如,我们已经按“代理初始化”一节中所述为 VM Object Allocation 事件进行了注册。当 JVM 分配了 Java 编程语言可见但其他工具机制不能探测到的对象时,我们将得到通知。这一点与 JVMPI 截然不同,JVMPI 在分配任何对象时都将发送事件。在 JVMTI 中,针对用户分配的对象不会发送任何事件,因为它期望使用的是字节码工具。例如,在 SimpleThread.java 程序中,分配 MyThread
或 Thread
对象时,我们是不会得到通知的。以后将单独发表一篇文章,描写如何使用字节码工具获取此信息。
VM Object Allocation 事件对于确定有关由 JVM 分配的对象的信息十分有用。在 Agent_OnLoad
方法中,我们将 callbackVMObjectAlloc
注册为发送 VM Object Allocation 事件时调用的函数。回调函数参数包含关于已分配对象的信息,如对象类和对象大小的 JNI 本地参考。借助于 jclass
参数 object_klass
,我们可以使用 GetClassSignature
函数获取关于类名的信息。我们可以把下面给出的对象类及其大小打印出来。注意避免过多的输出,我们仅需输出超过 50 个字节的对象信息就行了。
/* Callback function for VM Object Allocation events */ static void JNICALL callbackVMObjectAlloc (jvmtiEnv *jvmti_env, JNIEnv* jni_env, jthread thread, jobject object, jclass object_klass, jlong size) { ... char *className; ... if (size > 50) { err = (*jvmti)->GetClassSignature(jvmti, object_klass, &className, NULL); if (className != NULL) { printf("\ntype %s object allocated with size %d\n", className, (jint)size); } ... |
我们使用上面所介绍的 GetStackTrace
方法来输出正在分配该对象的线程的堆栈跟踪。我们依照该节所述获取指定深度的 框架。这些框架将作为 jvmtiFrameInfo
结构返回,这些结构包含每个框架的 jmethodID
(即 frames[x].method
)。GetMethodName
函数可以将 jmethodID
映射到特殊的方法名中。在此示例的最后部分,我们还将使用 GetMethodDeclaringClass
和 GetClassSignature
函数获取从其中调用过此方法的类的名称。
char *methodName; char *declaringClassName; jclass declaring_class; jvmtiError err; //print stack trace jvmtiFrameInfo frames[5]; jint count; int i; err = (*jvmti)->GetStackTrace(jvmti, NULL, 0, 5, &frames, &count); if (err == JVMTI_ERROR_NONE && count >= 1) { for (i = 0; i < count; i++) { err = (*jvmti)->GetMethodName(jvmti, frames[i].method, &methodName, NULL, NULL); if (err == JVMTI_ERROR_NONE) { err = (*jvmti)->GetMethodDeclaringClass(jvmti, frames[i].method, &declaring_class); err = (*jvmti)->GetClassSignature(jvmti, declaring_class, &declaringClassName, NULL); if (err == JVMTI_ERROR_NONE) { printf("at method %s in class %s\n", methodName, declaringClassName); } } } } ... |
注意,完成任务时应释放由这些函数分配给 char
数组的内存:
err = (*jvmti)->Deallocate(jvmti, (void*)className); err = (*jvmti)->Deallocate(jvmti, (void*)methodName); err = (*jvmti)->Deallocate(jvmti, (void*)declaringClassName); ... |
此代码的输出如下所示:
<!-- BEGIN VCD7 CODE SAMPLE COMPONENT --> type Ljava/lang/reflect/Constructor; object allocated with size 64 at method getDeclaredConstructors0 in class Ljava/lang/Class; at method privateGetDeclaredConstructors in class Ljava/lang/Class; at method getConstructor0 in class Ljava/lang/Class; at method getDeclaredConstructor in class Ljava/lang/Class; at method run in class Ljava/util/zip/ZipFile$1; |
原始类的返回名称是相应原始类型的签名字符类型。例如,java.lang.Integer.TYPE
为“I”。
在 VM Object Allocation 的回调方法中,我们仍将使用 IterateOverObjectsReachableFromObject
函数演示如何获取关于堆的附加信息。在此示例中,我们将 JNI 参考作为一个参数传递给刚刚分配的对象,该函数将在此新分配对象所能直接或间接到达的所有对象中迭代。对于每个可到达的对象,另外还有一个定义的回调函数可对其进行描述。在此示例中,传递到 IterateOverObjectsReachableFromObject
的回调函数名为 reference_object
:
err = (*jvmti)->IterateOverObjectsReachableFromObject (jvmti, object, &reference_object, NULL); if ( err != JVMTI_ERROR_NONE ) { printf("Cannot iterate over reachable objects\n"); } ... |
reference_object
函数定义如下:
/* JVMTI callback function. */ static jvmtiIterationControl JNICALL reference_object(jvmtiObjectReferenceKind reference_kind, jlong class_tag, jlong size, jlong* tag_ptr, jlong referrer_tag, jint referrer_index, void *user_data) { ... return JVMTI_ITERATION_CONTINUE; } ... |
在此示例中,我们使用 IterateOverObjectsReachableFromObject
函数计算新分配对象所能到达的所有对象的 总的大小,以及它们的对象类型。对象类型可以从 reference_kind
参数中确定。然后打印此信息以接收如下输出:
This object has references to objects of combined size 21232 This includes 45 classes, 9 fields, 1 arrays, 0 classloaders, 0 signers arrays, 0 protection domains, 19 interfaces, 13 static fields, and 2 constant pools. |
注意,位于 JVMTI 中的类似迭代函数允许迭代的对象有:整个堆(可到达的和不可到达的);根目录对象和根目录对象所能直接或间接到达的所有对象;堆中是指定类的实例的所有对象。使用这些函数的技巧和前面所介绍的类似。在执行这些函数期间,堆的状态没有任何变化:没有分配任何对象,没有对任何对象进行垃圾收集,并且对象的状态(包括堆值)也没有任何变化。结果,执行 Java 编程语言代码的线程、尝试恢复执行 Java 编程语言代码的线程和尝试执行 JNI 函数的线程都完全停了下来。所以,在对象参考回调函数中,不能使用任何 JNI 函数;在没有特别允许的情况下,也不允许使用任何 JVMTI 函数。
编译和执行示例代码
要编译并运行这里描述的示例应用程序的代码,请按以下步骤操作:
JDK_PATH="/home/xyz/j2sdk1.5.0/bin" |
CC="/net/compilers/S1Studio_8.0/SUNWspro/bin/cc" echo "...creating liba.so" ${CC} -G -KPIC -o liba.so -I${JDK_PATH}/include -I${JDK_PATH}/include/solaris a.c |
-agentlib:<jvmti-agent-library-name> -agentpath:/home/foo/jvmti/<jvmti-agent-library-name> |
echo "...creating SimpleThread.class" ${JDK_PATH}/bin/javac -g -d . SimpleThread.java echo "...running SimpleThread.class" LD_LIBRARY_PATH=. CLASSPATH=. ${JDK_PATH}/bin/java -showversion -agentlib:a SimpleThread |
注意:此示例代理代码是在 Solaris 9 Operating System 上构建和测试的。
结束语
在本文中,我们演示了 JVMTI 提供用于监控和管理 JVM 的一些接口。JVMTI 规范 (JSR-163) 旨在为需要访问 VM 状态的广泛的工具提供一个 VM 接口,这些工具包括但不限于:分析、调试、监控、线程分析和覆盖率分析工具。
建议开发人员不要使用 JVMPI 接口开发工具或调试实用工具,因为 JVMPI 是一种不受支持的实验技术。应考虑使用 JVMTI 编写 Java 虚拟机的所有分析和管理工具。