每个php变量存在一个叫"zval"的变量容器中。一个zval变量容器,除了包含变量的类型和值,还包括两个字节的额外信息。第一个是"is_ref",是个bool值,用来标识这个变量是否是属于引用集合(reference set)。通过这个字节,php引擎才能把普通变量和引用变量区分开来,由于php允许用户通过使用&来使用自定义引用,zval变量容器中还有一个内部引用计数机制,来优化内存使用。第二个额外字节是"refcount",用以表示指向这个zval变量容器的变量(也称符号即symbol)个数。所有的符号存在一个符号表中,其中每个符号都有作用域(scope),那些主脚本(比如:通过浏览器请求的的脚本)和每个函数或者方法也都有作用域。
当一个变量被赋常量值时,就会生成一个zval变量容器,如下例这样:
Example #1 Creating a new zval container
<?php
$a="newstring";
?>
在上例中,新的变量a,是在当前作用域中生成的。并且生成了类型为string和值为new string的变量容器。在额外的两个字节信息中,"is_ref"被默认设置为FALSE
,因为没有任何自定义的引用生成。"refcount" 被设定为1,因为这里只有一个变量使用这个变量容器. 注意到当"refcount"的值是1时,"is_ref"的值总是FALSE
. 如果你已经安装了»Xdebug,你能通过调用函数xdebug_debug_zval()显示"refcount"和"is_ref"的值。
Example #2 Displaying zval information
<?php
xdebug_debug_zval('a');
?>
以上例程会输出:
a: (refcount=1, is_ref=0)='new string'
把一个变量赋值给另一变量将增加引用次数(refcount).
Example #3 Increasing refcount of a zval
<?php
$a="newstring";
$b=$a;
xdebug_debug_zval('a');
?>
以上例程会输出:
a: (refcount=2, is_ref=0)='new string'
这时,引用次数是2,因为同一个变量容器被变量a和变量b关联.当没必要时,php不会去复制已生成的变量容器。变量容器在”refcount“变成0时就被销毁. 当任何关联到某个变量容器的变量离开它的作用域(比如:函数执行结束),或者对变量调用了函数unset()时,”refcount“就会减1,下面的例子就能说明:
Example #4 Decreasing zval refcount
<?php
$a="newstring";
$c=$b=$a;
xdebug_debug_zval('a');
unset($b,$c);
xdebug_debug_zval('a');
?>
以上例程会输出:
a: (refcount=3, is_ref=0)='new string' a: (refcount=1, is_ref=0)='new string'
如果我们现在执行unset($a);,包含类型和值的这个变量容器就会从内存中删除。
当考虑像array和object这样的复合类型时,事情就稍微有点复杂. 与标量(scalar)类型的值不同,array和object类型的变量把它们的成员或属性存在自己的符号表中。这意味着下面的例子将生成三个zval变量容器。
Example #5 Creating aarrayzval
<?php
$a=array('meaning'=>'life','number'=>42);
xdebug_debug_zval('a');
?>
以上例程的输出类似于:
a: (refcount=1, is_ref=0)=array ( 'meaning' => (refcount=1, is_ref=0)='life', 'number' => (refcount=1, is_ref=0)=42 )
Or graphically
这三个zval变量容器是:a,meaning和number。增加和减少”refcount”的规则和上面提到的一样. 下面, 我们在数组中再添加一个元素,并且把它的值设为数组中已存在元素的值:
Example #6 Adding already existing element to an array
<?php
$a=array('meaning'=>'life','number'=>42);
$a['life']=$a['meaning'];
xdebug_debug_zval('a');
?>
以上例程的输出类似于:
a: (refcount=1, is_ref=0)=array ( 'meaning' => (refcount=2, is_ref=0)='life', 'number' => (refcount=1, is_ref=0)=42, 'life' => (refcount=2, is_ref=0)='life' )
Or graphically
从以上的xdebug输出信息,我们看到原有的数组元素和新添加的数组元素关联到同一个"refcount"2的zval变量容器. 尽管 Xdebug的输出显示两个值为'life'的 zval 变量容器,其实是同一个。 函数xdebug_debug_zval()不显示这个信息,但是你能通过显示内存指针信息来看到。
删除数组中的一个元素,就是类似于从作用域中删除一个变量. 删除后,数组中的这个元素所在的容器的“refcount”值减少,同样,当“refcount”为0时,这个变量容器就从内存中被删除,下面又一个例子可以说明:
Example #7 Removing an element from an array
<?php
$a=array('meaning'=>'life','number'=>42);
$a['life']=$a['meaning'];
unset($a['meaning'],$a['number']);
xdebug_debug_zval('a');
?>
以上例程的输出类似于:
a: (refcount=1, is_ref=0)=array ( 'life' => (refcount=1, is_ref=0)='life' )
现在,当我们添加一个数组本身作为这个数组的元素时,事情就变得有趣,下个例子将说明这个。例中我们加入了引用操作符,否则php将生成一个复制。
Example #8 Adding the array itself as an element of it self
<?php
$a=array('one');
$a[]=&$a;
xdebug_debug_zval('a');
?>
以上例程的输出类似于:
a: (refcount=2, is_ref=1)=array ( 0 => (refcount=1, is_ref=0)='one', 1 => (refcount=2, is_ref=1)=... )
Or graphically
能看到数组变量 (a) 同时也是这个数组的第二个元素(1) 指向的变量容器中“refcount”为2。上面的输出结果中的"..."说明发生了递归操作, 显然在这种情况下意味着"..."指向原始数组。
跟刚刚一样,对一个变量调用unset,将删除这个符号,且它指向的变量容器中的引用次数也减1。所以,如果我们在执行完上面的代码后,对变量$a调用unset, 那么变量$a和数组元素 "1" 所指向的变量容器的引用次数减1, 从"2"变成"1". 下例可以说明:
尽管不再有某个作用域中的任何符号指向这个结构(就是变量容器),由于数组元素“1”仍然指向数组本身,所以这个容器不能被清除 。因为没有另外的符号指向它,用户没有办法清除这个结构,结果就会导致内存泄漏。庆幸的是,php将在请求结束时清除这个数据结构,但是在php清除之前,将耗费不少空间的内存。如果你要实现分析算法,或者要做其他像一个子元素指向它的父元素这样的事情,这种情况就会经常发生。当然,同样的情况也会发生在对象上,实际上对象更有可能出现这种情况,因为对象总是隐式的被引用。
如果上面的情况发生仅仅一两次倒没什么,但是如果出现几千次,甚至几十万次的内存泄漏,这显然是个大问题。在长时间运行的脚本,比如请求基本上不会结束的守护进程(deamons)或者单元测试中的大的套件(sets)中,在给 eZ 组件库的模板组件做单元测试时,后者(指单元测试中的大的套件)就会出现问题.它将需要耗用2GB的内存,而一般的测试服务器没有这么大的内存空间。
传统上,像以前的 php 用到的引用计数内存机制,无法处理循环的引用内存泄漏。然而 5.3.0 PHP 使用文章»引用计数系统中的同步周期回收(Concurrent Cycle Collection in Reference Counted Systems)中的同步算法,来处理这个内存泄漏问题。
对算法的完全说明有点超出这部分内容的范围,将只介绍其中基础部分。首先,我们先要建立一些基本规则,如果一个引用计数增加,它将继续被使用,当然就不再在垃圾中。如果引用计数减少到零,所在变量容器将被清除(free)。就是说,仅仅在引用计数减少到非零值时,才会产生垃圾周期(garbage cycle)。其次,在一个垃圾周期中,通过检查引用计数是否减1,并且检查哪些变量容器的引用次数是零,来发现哪部分是垃圾。
为避免不得不检查所有引用计数可能减少的垃圾周期,这个算法把所有可能根(possible roots 都是zval变量容器),放在根缓冲区(root buffer)中(用紫色来标记),这样可以同时确保每个可能的垃圾根(possible garbage root)在缓冲区中只出现一次。仅仅在根缓冲区满了时,才对缓冲区内部所有不同的变量容器执行垃圾回收操作。看上图的步骤 A。
在步骤 B 中,算法使用深度优先搜索查找所有可能的根,找到后将每个变量容器中的引用计数减“1",为确保不会对同一个变量容器减两次"1",用灰色标记已减过“1”的。在步骤 C 中,算法再一次对每个根节点使用深度优先搜索,检查每个变量容器的引用计数。如果引用计数是 0 ,变量容器用白色来标记(图中的蓝色)。如果引用次数大于0,则恢复在这个点上使用深度优先搜索而将引用计数减”1“的操作(即引用计数加“1”),然后将它们重新用黑色标记。在最后一步 D 中,算法遍历根缓冲区以从那里删除变量容器根(zval roots),同时,检查是否有在上一步中被白色标记的变量容器。每个被白色标记的变量容器都被清除。
现在,你已经对这个算法有了基本了解,我们回头来看这个如何与PHP集成。默认的,PHP的垃圾回收机制是打开的,然后有个php.ini设置允许你修改它:zend.enable_gc。
当垃圾回收机制打开时,每当根缓存区存满时,就会执行上面描述的循环查找算法。根缓存区有固定的大小,可存10,000个可能根,当然你可以通过修改PHP源码文件Zend/zend_gc.c中的常量GC_ROOT_BUFFER_MAX_ENTRIES,然后重新编译PHP,来修改这个10,000值。当垃圾回收机制关闭时,循环查找算法永不执行,然而,可能根将一直存在根缓冲区中,不管在配置中垃圾回收机制是否激活。
当垃圾回收机制关闭时,如果根缓冲区存满了可能根,更多的可能根显然不会被记录。那些没被记录的可能根,将不会被这个算法来分析处理。如果他们是循环引用周期的一部分,将永不能被清除进而导致内存泄漏。
即使在垃圾回收机制不可用时,可能根也被记录的原因是,相对于每次找到可能根后检查垃圾回收机制是否打开而言,记录可能根的操作更快。不过垃圾回收和分析机制本身要耗不少时间。
除了修改配置zend.enable_gc,也能通过分别调用gc_enable()和gc_disable()函数来打开和关闭垃圾回收机制。调用这些函数,与修改配置项来打开或关闭垃圾回收机制的效果是一样的。即使在可能根缓冲区还没满时,也能强制执行周期回收。你能调用gc_collect_cycles()函数达到这个目的。这个函数将返回使用这个算法回收的周期数。
允许打开和关闭垃圾回收机制并且允许自主的初始化的原因,是由于你的应用程序的某部分可能是高时效性的。在这种情况下,你可能不想使用垃圾回收机制。当然,对你的应用程序的某部分关闭垃圾回收机制,是在冒着可能内存泄漏的风险,因为一些可能根也许存不进有限的根缓冲区。因此,就在你调用gc_disable()函数释放内存之前,先调用gc_collect_cycles()函数可能比较明智。因为这将清除已存放在根缓冲区中的所有可能根,然后在垃圾回收机制被关闭时,可留下空缓冲区以有更多空间存储可能根。
在上一节我们已经简单的提到:回收可能根有细微的性能上影响,但这是把PHP 5.2与PHP 5.3比较时才有的。尽管在PHP 5.2中,记录可能根相对于完全不记录可能根要慢些,而PHP 5.3中对 PHP run-time 的其他修改减少了这个性能损失。
这里主要有两个领域对性能有影响。第一个是内存占用空间的节省,另一个是垃圾回收机制执行内存清理时的执行时间增加(run-time delay)。我们将研究这两个领域。
首先,实现垃圾回收机制的整个原因是为了,一旦先决条件满足,通过清理循环引用的变量来节省内存占用。在PHP执行中,一旦根缓冲区满了或者调用gc_collect_cycles()函数时,就会执行垃圾回收。在下图中,显示了下面脚本分别在PHP 5.2 和 PHP 5.3环境下的内存占用情况,其中排除了脚本启动时PHP本身占用的基本内存。
Example #1 Memory usage example
<?php
classFoo
{
public$var='3.1415962654';
}
$baseMemory=memory_get_usage();
for($i=0;$i<=100000;$i++)
{
$a=newFoo;
$a->self=$a;
if($i%500===0)
{
echosprintf('%8d:',$i),memory_get_usage()-$baseMemory,"\n";
}
}
?>
在这个很理论性的例子中,我们创建了一个对象,这个对象中的一个属性被设置为指回对象本身。在循环的下一个重复(iteration)中,当脚本中的变量被重新复制时,就会发生典型性的内存泄漏。在这个例子中,两个变量容器是泄漏的(对象容器和属性容器),但是仅仅能找到一个可能根:就是被unset的那个变量。在10,000次重复后(也就产生总共10,000个可能根),当根缓冲区满时,就执行垃圾回收机制,并且释放那些关联的可能根的内存。这从PHP 5.3的锯齿型内存占用图中很容易就能看到。每次执行完10,000次重复后,执行垃圾回收,并释放相关的重复使用的引用变量。在这个例子中由于泄漏的数据结构非常简单,所以垃圾回收机制本身不必做太多工作。从这个图表中,你能看到 PHP 5.3的最大内存占用大概是9 Mb,而PHP 5.2的内存占用一直增加。
垃圾回收影响性能的第二个领域是它释放已泄漏的内存耗费的时间。为了看到这个耗时时多少,我们稍微改变了上面的脚本,有更多次数的重复并且删除了循环中的内存占用计算,第二个脚本代码如下:
Example #2 GC performance influences
<?php
classFoo
{
public$var='3.1415962654';
}
for($i=0;$i<=1000000;$i++)
{
$a=newFoo;
$a->self=$a;
}
echomemory_get_peak_usage(),"\n";
?>
我们将运行这个脚本两次,一次通过配置zend.enable_gc打开垃圾回收机制时,另一次是它关闭时。
Example #3 Running the above script
time php -dzend.enable_gc=0 -dmemory_limit=-1 -n example2.php # and time php -dzend.enable_gc=1 -dmemory_limit=-1 -n example2.php
在我的机器上,第一个命令持续执行时间大概为10.7秒,而第二个命令耗费11.4秒。时间上增加了7%。然而,执行这个脚本时内存占用的峰值降低了98%,从931Mb 降到 10Mb。这个基准不是很科学,或者并不能代表真实应用程序的数据,但是它的确显示了垃圾回收机制在内存占用方面的好处。好消息就是,对这个脚本而言,在执行中出现更多的循环引用变量时,内存节省的更多的情况下,每次时间增加的百分比都是7%。
在PHP内部,可以显示更多的关于垃圾回收机制如何运行的信息。但是要显示这些信息,你需要先重新编译PHP使benchmark和data-collecting code可用。你需要在按照你的意愿运行./configure前,把环境变量CFLAGS设置成-DGC_BENCH=1。下面的命令串就是做这个事:
Example #4 Recompiling PHP to enable GC benchmarking
export CFLAGS=-DGC_BENCH=1 ./config.nice make clean make
当你用新编译的PHP二进制文件来重新执行上面的例子代码,在PHP执行结束后,你将看到下面的信息:
Example #5 GC statistics
GC Statistics ------------- Runs: 110 Collected: 2072204 Root buffer length: 0 Root buffer peak: 10000 Possible Remove from Marked Root Buffered buffer grey -------- -------- ----------- ------ ZVAL 7175487 1491291 1241690 3611871 ZOBJ 28506264 1527980 677581 1025731
主要的信息统计在第一个块。你能看到垃圾回收机制运行了110次,而且在这110次运行中,总共有超过两百万的内存分配被释放。只要垃圾回收机制运行了至少一次,根缓冲区峰值(Root buffer peak)总是10000.