3.3 TaskTracker启动以及发送Heartbeat
3.4 JobTracker接收Heartbeat并向TaskTracker分配任务
3.5 TaskTracker接收HeartbeatResponse
该文档从源代码的级别剖析了Hadoop0.20.2版本的MapReduce模块的运行原理和流程,对JobTracker、TaskTracker的内部结构和交互流程做了详细介绍。系统地分析了Map程序和Reduce程序运行的原理。读者在阅读之后会对Hadoop MapReduce0.20.2版本源代码有一个大致的认识。
如果读者想只是想从原理上更加深入了解Hadoop MapReduce运行机制的话,只需要阅读第2章综述即可,该章节要求读者对HadoopMapReduce模型有系统的了解。
如果读者想深入了解HadoopMapReduce的源代码,则需阅读该文档第2、3节。阅读第3节需要读者熟练掌握Java语言的基本语法,并且对反射机制、动态代理有一定的了解。同时,还要求读者对于Hadoop HDFS和Hadoop RPC的基本用法有一定的了解。
另外,属性Hadoop源代码的最好方法是远程调试,有关远程调试的方法请读者去网上自行查阅资料。
Hadoop源代码分为三大模块:MapReduce、HDFS和Hadoop Common。其中MapReduce模块主要实现了MapReduce模型的相关功能;HDFS模块主要实现了HDFS的相关功能;而Hadoop Common主要实现了一些基础功能,比如说RPC、网络通信等。
在用户使用HadoopMapReduce模型进行并行计算时,用户只需要写好Map函数、Reduce函数,之后调用JobClient将Job提交即可。在JobTracker收到提交的Job之后,便会对Job进行一系列的配置,然后交给TaskTracker进行执行。执行完毕之后,JobTracker会通知JobClient任务完成,并将结果存入HDFS中
如图所示,用户提交Job是通过JobClient类的submitJob()函数实现的。在Hadoop源代码中,一个被提交了的Job由JobInProgress类的一个实例表示。该类封装了表示Job的各种信息,以及Job所需要执行的各种动作。在调用submitJob()函数之后,JobTracker会将作业加入到一个队列中去,这个队列的名字叫做jobInitQueue。然后,在JobTracker中,有一个名为JobQueueTaskScheduler的对象,会不断轮询jobInitQueue队列,一旦发现有新的Job加入,便将其取出,然后将其初始化。
在Hadoop代码中,一个Task由一个TaskInProgress类的实例表示。该类封装了描述Task所需的各种信息以及Task执行的各种动作。
TaskTracker自从启动以后,会每隔一段时间向JobTracker发送消息,消息的名称为“Heartbeat”。Heartbeat中包含了该TaskTracker当前的状态以及对Task的请求。JobTracker在收到Heartbeat之后,会检查该heartbeat的里所包含的各种信息,如果发现错误会启动相应的错误处理程序。如果TaskTracker在Heartbeat中添加了对Task的请求,则JobTracker会添加相应的指令在对Heartbeat的回复中。在Hadoop源代码中,JobTracker对TaskTracker的指令称为action,JobTracker对TaskTracker所发送来的Heartbeat的回复消息称为HeartbeatResponse。
在TaskTracker内部,有一个队列叫做TaskQueue。该中包含了所有新加入的Task。每当TaskTracker收到HeartbeatResponse后,会对其进行检查,如果其中包含了新的Task,便将其加入到TaskQueue中。在TaskTracker内部,有两个线程不断轮询TaskQueue,一个是MapLauncher,另一个是ReduceLauncher。如果发现有新加入的Map任务,MapLauncher便将其取出并且执行。如果是Reduce任务,ReduceLauncher便将其取出执行。
不论是Map Task还是Reduce Task,当他们被取出之后,都要进行本地化。本地化的意思就是将所有需要的信息,比如需要运行的jar文件、配置文件、输入数据等等,一起拷贝到本地的文件系统。这样做的目的是为了方便任务在某台机器上独立执行。本地化之后,TaskTracker会为每一个task单独创建一个jvm,然后单独运行。等Task运行完之后,TaskTracker会通知JobTracker任务完成,以进行下一步的动作。
等到所有的Task都完成之后,Job也就完成了,此时JobTracker会通知JobClient工作完成。
下面从用户使用Hadoop进行MapReduce计算的过程为线索,详细介绍Task执行的细节,并对Hadoop MapReduce的主要代码进行分析。
Hadoop集群的启动是通过在Master上运行start-all.sh脚本进行的。运行该脚本之后,Hadoop会配置一系列的环境变量以及其他Hadoop运行所需要的参数,然后在本机运行JobTracker和NameNode。然后通过SSH登录到所有slave机器上,启动TaskTracker和DataNode。
因为本文只介绍HadoopMapReduce模块,所以NameNode和DataNode的相关知识不再介绍。
org.apache.hadoop.mapred.JobTracker类实现了Hadoop MapReduce模型的JobTracker的功能,主要负责任务的接受,初始化,调度以及对TaskTracker的监控。
JobTracker单独作为一个JVM运行,main函数就是启动JobTracker的入口函数。在main函数中,有以下两行非常重要的代码:
startTracker(new JobConf());
JobTracker.offerService();
startTracker函数是一个静态函数,它调用JobTracker的构造函数生成一个JobTracker类的实例,名为result。然后,进行了一系列初始化活动,包括启动RPC server,启动内置的jetty服务器,检查是否需要重启JobTracker等。
在JobTracker.offerService()中,调用了taskScheduler对象的start()方法。该对象是JobTracker的一个数据成员,类型为TaskScheduler。该类型的提供了一系列接口,使得JobTracker可以对所有提交的job进行初始化以及调度。但是该类型实际上是一个抽象类型,其真正的实现类型为JobQueueTaskScheduler类,所以,taskScheduler.start()方法执行的是JobQueueTaskScheduler类的start方法。
该方法的详细代码如下:
public synchronized void start() throwsIOException {
//调用TaskScheduler.start()方法,实际上没有做任何事情
super.start();
//注册一个JobInProgressListerner监听器
taskTrackerManager.addJobInProgressListener(jobQueueJobInProgressListener
);
eagerTaskInitializationListener.setTaskTrackerManager(taskTrackerManager);
eagerTaskInitializationListener.start();
taskTrackerManager.addJobInProgressListener(eagerTaskInitializationListener)
}
JobQueueTaskScheduler类的start方法主要注册了两个非常重要的监听器:jobQueueJobInProgressListener和eagerTaskInitializationListener。前者是JobQueueJobInProgressListener类的一个实例,该类以先进先出的方式维持一个JobInProgress的队列,并且监听各个JobInProgress实例在生命周期中的变化;后者是EagerTaskInitializationListener类的一个实例,该类不断监听jobInitQueue,一旦发现有新的job被提交(即有新的JobInProgress实例被加入),则立即调用该实例的initTasks方法,对job进行初始化。
JobInProgress类的initTasks方法的主要代码如下:
public synchronized void initTasks() throwsIOException {
……
//从HDFS中读取job.split文件从而生成input splits
String jobFile = profile.getJobFile();
Path sysDir = newPath(this.jobtracker.getSystemDir());
FileSystem fs = sysDir.getFileSystem(conf);
DataInputStream splitFile =
fs.open(newPath(conf.get("mapred.job.split.file")));
JobClient.RawSplit[] splits;
try {
splits = JobClient.readSplitFile(splitFile);
} finally {
splitFile.close();
}
//map task的个数就是input split的个数
numMapTasks = splits.length;
//为每个map tasks生成一个TaskInProgress来处理一个input split
maps = newTaskInProgress[numMapTasks];
for(inti=0; i < numMapTasks; ++i) {
inputLength += splits[i].getDataLength();
maps[i] =new TaskInProgress(jobId, jobFile,
splits[i],
jobtracker, conf, this, i);
}
/*
对于map task,将其放入nonRunningMapCache,是一个Map<Node,
List<TaskInProgress>>,也即对于map task来讲,其将会被分配到其input
split所在的Node上。在此,Node代表一个datanode或者机架或者数据中
心。nonRunningMapCache将在JobTracker向TaskTracker分配map task的
时候使用。
*/
if(numMapTasks > 0) {
nonRunningMapCache = createCache(splits,maxLevel);
}
//创建reduce task
this.reduces = new TaskInProgress[numReduceTasks];
for (int i= 0; i < numReduceTasks; i++) {
reduces[i]= new TaskInProgress(jobId, jobFile,
numMapTasks, i,
jobtracker, conf, this);
/*reducetask放入nonRunningReduces,其将在JobTracker向TaskTracker
分配reduce task的时候使用。*/
nonRunningReduces.add(reduces[i]);
}
//创建两个cleanup task,一个用来清理map,一个用来清理reduce.
cleanup =new TaskInProgress[2];
cleanup[0]= new TaskInProgress(jobId, jobFile, splits[0],
jobtracker, conf, this, numMapTasks);
cleanup[0].setJobCleanupTask();
cleanup[1]= new TaskInProgress(jobId, jobFile, numMapTasks,
numReduceTasks, jobtracker, conf, this);
cleanup[1].setJobCleanupTask();
//创建两个初始化 task,一个初始化map,一个初始化reduce.
setup =new TaskInProgress[2];
setup[0] =new TaskInProgress(jobId, jobFile, splits[0],
jobtracker,conf, this, numMapTasks + 1 );
setup[0].setJobSetupTask();
setup[1] =new TaskInProgress(jobId, jobFile, numMapTasks,
numReduceTasks + 1, jobtracker, conf, this);
setup[1].setJobSetupTask();
tasksInited.set(true);//初始化完毕
……
}
org.apache.hadoop.mapred.TaskTracker类实现了MapReduce模型中TaskTracker的功能。
TaskTracker也是作为一个单独的JVM来运行的,其main函数就是TaskTracker的入口函数,当运行start-all.sh时,脚本就是通过SSH运行该函数来启动TaskTracker的。
Main函数中最重要的语句是:
new TaskTracker(conf).run();
其中run函数主要调用了offerService函数:
State offerService() throws Exception {
longlastHeartbeat = 0;
//TaskTracker进行是一直存在的
while(running && !shuttingDown) {
……
longnow = System.currentTimeMillis();
//每隔一段时间就向JobTracker发送heartbeat
longwaitTime = heartbeatInterval - (now - lastHeartbeat);
if(waitTime > 0) {
synchronized(finishedCount) {
if (finishedCount[0] == 0) {
finishedCount.wait(waitTime);
}
finishedCount[0] = 0;
}
}
……
//发送Heartbeat到JobTracker,得到response
HeartbeatResponse heartbeatResponse = transmitHeartBeat(now);
……
//从Response中得到此TaskTracker需要做的事情
TaskTrackerAction[] actions = heartbeatResponse.getActions();
……
if(actions != null){
for(TaskTrackerAction action: actions) {
if (action instanceof LaunchTaskAction) {
//如果是运行一个新的Task,则将Action添加到任务队列中
addToTaskQueue((LaunchTaskAction)action);
}else if (action instanceof CommitTaskAction) {
CommitTaskAction commitAction = (CommitTaskAction)action;
if (!commitResponses.contains(commitAction.getTaskID())) {
commitResponses.add(commitAction.getTaskID());
}
}else {
tasksToCleanup.put(action);
}
}
}
}
returnState.NORMAL;
}
其中transmitHeartBeat函数的作用就是第2章中提到的向JobTracker发送Heartbeat。其主要逻辑如下:
private HeartbeatResponse transmitHeartBeat(longnow) throws IOException {
//每隔一段时间,在heartbeat中要返回给JobTracker一些统计信息
booleansendCounters;
if (now> (previousUpdate + COUNTER_UPDATE_INTERVAL)) {
sendCounters = true;
previousUpdate = now;
}
else {
sendCounters = false;
}
……
//报告给JobTracker,此TaskTracker的当前状态
if(status == null) {
synchronized (this) {
status = new TaskTrackerStatus(taskTrackerName, localHostname,
httpPort,
cloneAndResetRunningTaskStatuses(
sendCounters),
failures,
maxCurrentMapTasks,
maxCurrentReduceTasks);
}
}
……
//当满足下面的条件的时候,此TaskTracker请求JobTracker为其分配一个新的Task来运行:
//当前TaskTracker正在运行的map task的个数小于可以运行的map task的最大个数
//当前TaskTracker正在运行的reduce task的个数小于可以运行的reduce task的最大个数
booleanaskForNewTask;
longlocalMinSpaceStart;
synchronized (this) {
askForNewTask = (status.countMapTasks() < maxCurrentMapTasks ||
status.countReduceTasks() <maxCurrentReduceTasks)
&& acceptNewTasks;
localMinSpaceStart = minSpaceStart;
}
……
//向JobTracker发送heartbeat,这是一个RPC调用
HeartbeatResponse heartbeatResponse = jobClient.heartbeat(status,
justStarted, askForNewTask,
heartbeatResponseId);
……
returnheartbeatResponse;
}
当JobTracker被RPC调用来发送heartbeat的时候,JobTracker的heartbeat(TaskTrackerStatus status,boolean initialContact, booleanacceptNewTasks, short responseId)函数被调用:
public synchronized HeartbeatResponseheartbeat(TaskTrackerStatus status,
boolean initialContact, boolean acceptNewTasks,short responseId)
throws IOException{
……
StringtrackerName = status.getTrackerName();
……
shortnewResponseId = (short)(responseId + 1);
……
HeartbeatResponse response = newHeartbeatResponse(newResponseId, null);
List<TaskTrackerAction> actions = new ArrayList<TaskTrackerAction>();
//如果TaskTracker向JobTracker请求一个task运行
if(acceptNewTasks) {
TaskTrackerStatus taskTrackerStatus = getTaskTracker(trackerName);
if(taskTrackerStatus == null) {
LOG.warn("Unknown task tracker polling; ignoring: " +trackerName);
} else{
//setup和cleanup的task优先级最高
List<Task> tasks = getSetupAndCleanupTasks(taskTrackerStatus);
if(tasks == null ) {
//任务调度器分配任务
tasks = taskScheduler.assignTasks(taskTrackerStatus);
}
if(tasks != null) {
for(Task task : tasks) {
//将任务放入actions列表,返回给TaskTracker
expireLaunchingTasks.addNewTask(task.getTaskID());
actions.add(new LaunchTaskAction(task));
}
}
}
}
……
intnextInterval = getNextHeartbeatInterval();
response.setHeartbeatInterval(nextInterval);
response.setActions(
actions.toArray(newTaskTrackerAction[actions.size()]));
……
returnresponse;
}
默认的任务调度器为JobQueueTaskScheduler,其assignTasks如下:
public synchronized List<Task>assignTasks(TaskTrackerStatus taskTracker)
throwsIOException {
ClusterStatus clusterStatus = taskTrackerManager.getClusterStatus();
intnumTaskTrackers = clusterStatus.getTaskTrackers();
Collection<JobInProgress> jobQueue
= jobQueueJobInProgressListener.getJobQueue();
intmaxCurrentMapTasks = taskTracker.getMaxMapTasks();
intmaxCurrentReduceTasks = taskTracker.getMaxReduceTasks();
intnumMaps = taskTracker.countMapTasks();
intnumReduces = taskTracker.countReduceTasks();
//计算剩余的map和reduce的工作量:remaining
intremainingReduceLoad = 0;
intremainingMapLoad = 0;
synchronized (jobQueue) {
for(JobInProgress job : jobQueue) {
if(job.getStatus().getRunState() == JobStatus.RUNNING) {
inttotalMapTasks = job.desiredMaps();
inttotalReduceTasks = job.desiredReduces();
remainingMapLoad += (totalMapTasks - job.finishedMaps());
remainingReduceLoad += (totalReduceTasks -job.finishedReduces());
}
}
}
//计算平均每个TaskTracker应有的工作量,remaining/numTaskTrackers是剩余的工作量除以TaskTracker的个数。
intmaxMapLoad = 0;
intmaxReduceLoad = 0;
if(numTaskTrackers > 0) {
maxMapLoad = Math.min(maxCurrentMapTasks,
(int)Math.ceil((double) remainingMapLoad numTaskTrackers));
maxReduceLoad = Math.min(maxCurrentReduceTasks,
(int)Math.ceil((double) remainingReduceLoad
numTaskTrackers));
}
……
//map优先于reduce,当TaskTracker上运行的map task数目小于平均的工作量,则向其分配map task
if(numMaps < maxMapLoad) {
inttotalNeededMaps = 0;
synchronized (jobQueue) {
for(JobInProgress job : jobQueue) {
if(job.getStatus().getRunState() != JobStatus.RUNNING) {
continue;
}
Task t = job.obtainNewMapTask(taskTracker,numTaskTrackers,
taskTrackerManager.getNumberOfUniqueHosts());
if(t != null) {
return Collections.singletonList(t);
}
……
}
}
}
//分配完map task,再分配reduce task
if(numReduces < maxReduceLoad) {
inttotalNeededReduces = 0;
synchronized (jobQueue) {
for(JobInProgress job : jobQueue) {
if(job.getStatus().getRunState() != JobStatus.RUNNING ||
job.numReduceTasks == 0) {
continue;
}
Task t = job.obtainNewReduceTask(taskTracker, numTaskTrackers,
taskTrackerManager.getNumberOfUniqueHosts());
if(t != null) {
return Collections.singletonList(t);
}
……
}
}
}
returnnull;
}
从上面的代码中我们可以知道,JobInProgress的obtainNewMapTask是用来分配map task的,其主要调用findNewMapTask,根据TaskTracker所在的Node从nonRunningMapCache中查找TaskInProgress。JobInProgress的obtainNewReduceTask是用来分配reduce task的,其主要调用findNewReduceTask,从nonRunningReduces查找TaskInProgress。
在向JobTracker发送heartbeat后,如果返回的reponse中含有分配好的任务LaunchTaskAction,TaskTracker则调用addToTaskQueue方法,将其加入TaskTracker类中MapLauncher或者ReduceLauncher对象的taskToLaunch队列。在此,MapLauncher和ReduceLauncher对象均为TaskLauncher类的实例。该类是TaskTracker类的一个内部类,具有一个数据成员,是TaskTracker.TaskInProgress类型的队列。在此特别注意,在TaskTracker类内部所提到的TaskInProgress类均为TaskTracker的内部类,我们用TaskTracker.TaskInProgress表示,一定要和MapRed包中的TaskInProgress类区分,后者我们直接用TaskInProgress表示。如果应答包中包含的任务是map task则放入mapLancher的taskToLaunch队列,如果是reduce task则放入reduceLancher的taskToLaunch队列:
private void addToTaskQueue(LaunchTaskActionaction) {
if(action.getTask().isMapTask()) {
mapLauncher.addToTaskQueue(action);
} else {
reduceLauncher.addToTaskQueue(action);
}
}
TaskLauncher类的addToTaskQueue方法代码如下:
private TaskInProgress registerTask(LaunchTaskAction action,
TaskLauncher launcher) {
//从action中获取Task对象
Task t = action.getTask();
LOG.info("LaunchTaskAction(registerTask): " + t.getTaskID() +
" task's state:" + t.getState());
//生成TaskTracker.TaskInProgress对象
TaskInProgress tip = new TaskInProgress(t, this.fConf, launcher);
synchronized(this){
/*在相应的数据结构中增加所生成的TaskTracker.TaskInProgress对
象,以通知程序其他部分该任务的建立*/
tasks.put(t.getTaskID(),tip);
runningTasks.put(t.getTaskID(),tip);
boolean isMap =t.isMapTask();
if (isMap) {
mapTotal++;
} else {
reduceTotal++;
}
}
return tip;
}
同时,TaskLauncher类继承了Thread类,所以在程序运行过程中,它们各自都以一个线程独立运行。它们的启动在TaskTracker初始化过程中已经完成。该类的run函数就是不断监测taskToLaunch队列中是否有新的TaskTracker.TaskInProgress对象加入。如果有则从中取出一个对象,然后调用TaskTracker类的startNewTask(TaskInProgress tip)来启动一个task,其又主要调用了localizeJob(TaskInProgresstip),该函数的工作就是第二节中提到的本地化。该函数代码如下:
private void localizeJob(TaskInProgress tip)throws IOException {
//首先要做的一件事情是有关Task的文件从HDFS拷贝的TaskTracker的本地文件系统中:job.split,job.xml以及job.jar
PathlocalJarFile = null;
Task t =tip.getTask();
JobIDjobId = t.getJobID();
PathjobFile = new Path(t.getJobFile());
……
PathlocalJobFile = lDirAlloc.getLocalPathForWrite(
getLocalJobDir(jobId.toString())
+ Path.SEPARATOR + "job.xml",
jobFileSize, fConf);
RunningJob rjob = addTaskToJob(jobId, tip);
synchronized (rjob) {
if(!rjob.localized) {
FileSystem localFs = FileSystem.getLocal(fConf);
PathjobDir = localJobFile.getParent();
……
//将job.split拷贝到本地
systemFS.copyToLocalFile(jobFile, localJobFile);
JobConf localJobConf = new JobConf(localJobFile);
PathworkDir = lDirAlloc.getLocalPathForWrite(
(getLocalJobDir(jobId.toString())
+ Path.SEPARATOR +"work"), fConf);
if(!localFs.mkdirs(workDir)) {
throw new IOException("Mkdirs failed to create "
+ workDir.toString());
}
System.setProperty("job.local.dir", workDir.toString());
localJobConf.set("job.local.dir", workDir.toString());
//copy Jar file to the local FS and unjar it.
String jarFile = localJobConf.getJar();
longjarFileSize = -1;
if(jarFile != null) {
Path jarFilePath = new Path(jarFile);
localJarFile = new Path(lDirAlloc.getLocalPathForWrite(
getLocalJobDir(jobId.toString())
+Path.SEPARATOR + "jars",
5 *jarFileSize, fConf), "job.jar");
if(!localFs.mkdirs(localJarFile.getParent())) {
throw new IOException("Mkdirs failed to create jars directory");
}
//将job.jar拷贝到本地
systemFS.copyToLocalFile(jarFilePath, localJarFile);
localJobConf.setJar(localJarFile.toString());
//将job得configuration写成job.xml
OutputStream out = localFs.create(localJobFile);
try{
localJobConf.writeXml(out);
}finally {
out.close();
}
// 解压缩job.jar
RunJar.unJar(new File(localJarFile.toString()),
newFile(localJarFile.getParent().toString()));
}
rjob.localized = true;
rjob.jobConf = localJobConf;
}
}
//真正的启动此Task
launchTaskForJob(tip, new JobConf(rjob.jobConf));
}
当所有的task运行所需要的资源都拷贝到本地后,则调用TaskTracker的launchTaskForJob方法,其又调用TaskTracker.TaskInProgress的launchTask函数:
public synchronized void launchTask() throwsIOException {
……
//创建task运行目录
localizeTask(task);
if(this.taskStatus.getRunState() == TaskStatus.State.UNASSIGNED) {
this.taskStatus.setRunState(TaskStatus.State.RUNNING);
}
//创建并启动TaskRunner,对于MapTask,创建的是MapTaskRunner,对于ReduceTask,创建的是ReduceTaskRunner
this.runner = task.createRunner(TaskTracker.this, this);
this.runner.start();
this.taskStatus.setStartTime(System.currentTimeMillis());
}
TaskRunner是抽象类,是Thread类的子类,其run函数如下:
public final void run() {
……
TaskAttemptID taskid = t.getTaskID();
LocalDirAllocator lDirAlloc = newLocalDirAllocator("mapred.local.dir");
FilejobCacheDir = null;
if(conf.getJar() != null) {
jobCacheDir = new File(
newPath(conf.getJar()).getParent().toString());
}
File workDir = newFile(lDirAlloc.getLocalPathToRead(
TaskTracker.getLocalTaskDir(
t.getJobID().toString(),
t.getTaskID().toString(),
t.isTaskCleanupTask())
+ Path.SEPARATOR + MRConstants.WORKDIR,
conf).toString());
FileSystem fileSystem;
PathlocalPath;
……
//拼写classpath
StringbaseDir;
Stringsep = System.getProperty("path.separator");
StringBuffer classPath = new StringBuffer();
//start with same classpath as parent process
classPath.append(System.getProperty("java.class.path"));
classPath.append(sep);
if(!workDir.mkdirs()) {
if(!workDir.isDirectory()) {
LOG.fatal("Mkdirs failed to create " + workDir.toString());
}
}
Stringjar = conf.getJar();
if (jar!= null) {
// ifjar exists, it into workDir
File[] libs = new File(jobCacheDir, "lib").listFiles();
if(libs != null) {
for(int i = 0; i < libs.length; i++) {
classPath.append(sep); //add libs from jar to classpath
classPath.append(libs[i]);
}
}
classPath.append(sep);
classPath.append(new File(jobCacheDir, "classes"));
classPath.append(sep);
classPath.append(jobCacheDir);
}
……
classPath.append(sep);
classPath.append(workDir);
//拼写命令行java及其参数
Vector<String> vargs = new Vector<String>(8);
Filejvm =
newFile(new File(System.getProperty("java.home"), "bin"),"java");
vargs.add(jvm.toString());
StringjavaOpts = conf.get("mapred.child.java.opts", "-Xmx200m");
javaOpts = javaOpts.replace("@taskid@", taskid.toString());
String[] javaOptsSplit = javaOpts.split(" ");
StringlibraryPath = System.getProperty("java.library.path");
if(libraryPath == null) {
libraryPath = workDir.getAbsolutePath();
} else{
libraryPath += sep + workDir;
}
booleanhasUserLDPath = false;
for(inti=0; i<javaOptsSplit.length ;i++) {
if(javaOptsSplit[i].startsWith("-Djava.library.path=")) {
javaOptsSplit[i] += sep + libraryPath;
hasUserLDPath = true;
break;
}
}
if(!hasUserLDPath) {
vargs.add("-Djava.library.path=" + libraryPath);
}
for(int i = 0; i < javaOptsSplit.length; i++) {
vargs.add(javaOptsSplit[i]);
}
//添加Child进程的临时文件夹
Stringtmp = conf.get("mapred.child.tmp", "./tmp");
PathtmpDir = new Path(tmp);
if(!tmpDir.isAbsolute()) {
tmpDir = new Path(workDir.toString(), tmp);
}
FileSystem localFs = FileSystem.getLocal(conf);
if(!localFs.mkdirs(tmpDir) && !localFs.getFileStatus(tmpDir).isDir()) {
thrownew IOException("Mkdirs failed to create " + tmpDir.toString());
}
vargs.add("-Djava.io.tmpdir=" + tmpDir.toString());
// Addclasspath.
vargs.add("-classpath");
vargs.add(classPath.toString());
//log文件夹
longlogSize = TaskLog.getTaskLogLength(conf);
vargs.add("-Dhadoop.log.dir=" +
newFile(System.getProperty("hadoop.log.dir")
).getAbsolutePath());
vargs.add("-Dhadoop.root.logger=INFO,TLA");
vargs.add("-Dhadoop.tasklog.taskid=" + taskid);
vargs.add("-Dhadoop.tasklog.totalLogFileSize=" + logSize);
// 运行map task和reduce task的子进程的main class是Child
vargs.add(Child.class.getName());// main of Child
……
//运行子进程
jvmManager.launchJvm(this,
jvmManager.constructJvmEnv(setup,vargs,stdout,stderr,logSize,
workDir, env, pidFile, conf));
}
在程序运行过程中,实际运行的TaskRunner实例应该是MapTaskRunner或者是ReduceTaskRunner。这两个子类只对TaskRunner进行了简单修改,在此不做赘述。
在jvmManager.launchJvm()方法中,程序将创建一个新的jvm,来执行新的程序。
真正的map task和reduce task都是在Child进程中运行的,Child的main函数的主要逻辑如下:
while (true) {
//从TaskTracker通过网络通信得到JvmTask对象
JvmTaskmyTask = umbilical.getTask(jvmId);
……
idleLoopCount = 0;
task =myTask.getTask();
taskid =task.getTaskID();
isCleanup= task.isTaskCleanupTask();
JobConfjob = new JobConf(task.getJobFile());
TaskRunner.setupWorkDir(job);
numTasksToExecute = job.getNumTasksToExecutePerJvm();
task.setConf(job);
defaultConf.addResource(newPath(task.getJobFile()));
……
//运行task
task.run(job, umbilical);// run the task
if(numTasksToExecute > 0 && ++numTasksExecuted ==
numTasksToExecute){
break;
}
}
如果task是MapTask,则其run函数如下:
public void run(final JobConf job, finalTaskUmbilicalProtocol umbilical)
throws IOException,ClassNotFoundException, InterruptedException {
//负责与TaskTracker的通信,通过该对象可以获得必要的对象
this.umbilical = umbilical;
// 启动Reporter线程,用来和TaskTracker交互目前运行的状态
TaskReporter reporter = new TaskReporter(getProgress(), umbilical);
reporter.startCommunicationThread();
boolean useNewApi =job.getUseNewMapper();
/*用来初始化任务,主要是进行一些和任务输出相关的设置,比如创
建commiter,设置工作目录等*/
initialize(job, getJobID(),reporter, useNewApi);
/*以下4个if语句均是根据任务类型的不同进行相应的操作,这些方
法均是Task类的方法,所以与任务是MapTask还是ReduceTask无关*/
if(jobCleanup) {
runJobCleanupTask(umbilical,reporter);
return;
}
if(jobSetup) {
//主要是创建工作目录的FileSystem对象
runJobSetupTask(umbilical,reporter);
return;
}
if(taskCleanup) {
//设置任务目前所处的阶段为结束阶段,并且删除工作目录
runTaskCleanupTask(umbilical,reporter);
return;
}
//如果不是上述四种类型,则真正运行任务
if (useNewApi) {
runNewMapper(job, split, umbilical,reporter);
} else {
runOldMapper(job, split, umbilical, reporter);
}
done(umbilical, reporter);
}
其中,我们只研究运用新API编写程序的情况,所以runOldMapper函数我们将不做考虑。runNewMapper的代码如下:
private <INKEY,INVALUE,OUTKEY,OUTVALUE>
voidrunNewMapper(
final JobConf job,
final BytesWritable rawSplit,
final TaskUmbilicalProtocol umbilical,
TaskReporter reporter
) throws IOException, ClassNotFoundException, InterruptedException{
/*TaskAttemptContext类继承于JobContext类,相对于JobContext类增加
了一些有关task的信息。通过taskContext对象可以获得很多与任务执行相
关的类,比如用户定义的Mapper类,InputFormat类等等*/
org.apache.hadoop.mapreduce.TaskAttemptContexttaskContext =
new org.apache.hadoop.mapreduce.TaskAttemptContext(job,getTaskID());
//创建用户自定义的Mapper类的实例
org.apache.hadoop.mapreduce.Mapper
<INKEY,INVALUE,OUTKEY,OUTVALUE> mapper=
org.apache.hadoop.mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE>) ReflectionUtils.newInstance(taskContext.getMapperClass(),job);
// 创建用户指定的InputFormat类的实例
org.apache.hadoop.mapreduce.InputFormat<INKEY,INVALUE> inputFormat=(org.apache.hadoop.mapreduce.InputFormat<INKEY,INVALUE>)
ReflectionUtils.newInstance(taskContext.getInputFormatClass(),job);
// 重新生成InputSplit
org.apache.hadoop.mapreduce.InputSplit split =null;
DataInputBuffer splitBuffer =new DataInputBuffer();
splitBuffer.reset(rawSplit.getBytes(), 0, rawSplit.getLength());
SerializationFactory factory =new SerializationFactory(job);
Deserializer<? extendsorg.apache.hadoop.mapreduce.InputSplit>
deserializer =
(Deserializer<? extendsorg.apache.hadoop.mapreduce.InputSplit>)
factory.getDeserializer(job.getClassByName(splitClass));
deserializer.open(splitBuffer);
split =deserializer.deserialize(null);
//根据InputFormat对象创建RecordReader对象,默认是LineRecordReader
org.apache.hadoop.mapreduce.RecordReader<INKEY,INVALUE> input =
new NewTrackingRecordReader<INKEY,INVALUE>
(inputFormat.createRecordReader(split, taskContext), reporter);
job.setBoolean("mapred.skip.on", isSkipping());
//生成RecordWriter对象
org.apache.hadoop.mapreduce.RecordWriter output = null;
org.apache.hadoop.mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE>.Context mapperContext = null;
try {
Constructor<org.apache.hadoop.mapreduce.Mapper.Context>
contextConstructor =
org.apache.hadoop.mapreduce.Mapper.Context.class.getConstructor
(newClass[]{org.apache.hadoop.mapreduce.Mapper.class,
Configuration.class,
org.apache.hadoop.mapreduce.TaskAttemptID.class,
org.apache.hadoop.mapreduce.RecordReader.class,
org.apache.hadoop.mapreduce.RecordWriter.class,
org.apache.hadoop.mapreduce.OutputCommitter.class,
org.apache.hadoop.mapreduce.StatusReporter.class,
org.apache.hadoop.mapreduce.InputSplit.class});
//get an output object
if(job.getNumReduceTasks() == 0) {
output = newNewDirectOutputCollector(taskContext, job,
umbilical, reporter);
} else{
output = new NewOutputCollector(taskContext, job, umbilical,
reporter);
}
mapperContext = contextConstructor.newInstance(mapper, job,
getTaskID(), input, output, committer, reporter, split);
/*初始化,在默认情况下调用的是LineRecordReader的initialize方
法,主要是打开输入文件并且将文件指针指向文件头*/
input.initialize(split, mapperContext);
mapper.run(mapperContext); //运行真正的Mapper类
input.close();
output.close(mapperContext);
} catch(NoSuchMethodException e) {
thrownew IOException("Can't find Context constructor", e);
} catch(InstantiationException e) {
thrownew IOException("Can't create Context", e);
} catch(InvocationTargetException e) {
thrownew IOException("Can't invoke Context constructor", e);
} catch(IllegalAccessException e) {
thrownew IOException("Can't invoke Context constructor", e);
}
}
其中mapper.run方法调用的是Mapper类的run方法。这也是用户要实现map方法所需要继承的类。该类的run方法代码如下:
public void run(Context context) throws IOException, InterruptedException{
setup(context);
while (context.nextKeyValue()){
map(context.getCurrentKey(),context.getCurrentValue(), context);
}
cleanup(context);
}
该方法首先调用了setup方法,这个方法在Mapper当中实际上是什么也没有做。用户可重写此方法让程序在执行map函数之前进行一些其他操作。然后,程序将不断获取键值对交给map函数处理,也就是用户所希望进行的操作。之后,程序调用cleanup函数。这个方法和setup一样,也是Mapper类的一个方法,但是实际上什么也没有做。用户可以重写此方法进行一些收尾工作。
如果运行的任务是ReduceTask,则其run函数如下:
public void run(JobConfjob, final TaskUmbilicalProtocol umbilical)
throws IOException,InterruptedException, ClassNotFoundException {
this.umbilical = umbilical;
job.setBoolean("mapred.skip.on", isSkipping());
/*添加reduce过程需要经过的几个阶段。以便通知TaskTracker目前运
行的情况*/
if (isMapOrReduce()) {
copyPhase =getProgress().addPhase("copy");
sortPhase = getProgress().addPhase("sort");
reducePhase =getProgress().addPhase("reduce");
}
// 设置并启动reporter进程以便和TaskTracker进行交流
TaskReporter reporter = newTaskReporter(getProgress(), umbilical);
reporter.startCommunicationThread();
boolean useNewApi =job.getUseNewReducer();
/*用来初始化任务,主要是进行一些和任务输出相关的设置,比如创
建commiter,设置工作目录等*/
initialize(job, getJobID(), reporter,useNewApi);
/*以下4个if语句均是根据任务类型的不同进行相应的操作,这些方
法均是Task类的方法,所以与任务是MapTask还是ReduceTask无关*/
if(jobCleanup) {
runJobCleanupTask(umbilical, reporter);
return;
}
if(jobSetup) {
//主要是创建工作目录的FileSystem对象
runJobSetupTask(umbilical, reporter);
return;
}
if(taskCleanup) {
//设置任务目前所处的阶段为结束阶段,并且删除工作目录
runTaskCleanupTask(umbilical, reporter);
return;
}
//Initialize the codec
codec =initCodec();
boolean isLocal ="local".equals(job.get("mapred.job.tracker","local"));
if (!isLocal) {
//ReduceCopier对象负责将Map函数的输出拷贝至Reduce所在机器
reduceCopier = newReduceCopier(umbilical, job, reporter);
//fetchOutputs函数负责拷贝各个Map函数的输出
if (!reduceCopier.fetchOutputs()){
if(reduceCopier.mergeThrowable instanceof FSError) {
throw(FSError)reduceCopier.mergeThrowable;
}
throw newIOException("Task: " + getTaskID() +
" - The reducecopier failed", reduceCopier.mergeThrowable);
}
}
copyPhase.complete(); // copy is already complete
setPhase(TaskStatus.Phase.SORT);
statusUpdate(umbilical);
final FileSystem rfs =FileSystem.getLocal(job).getRaw();
//根据JobTracker是否在本地来决定调用哪种排序方式
RawKeyValueIterator rIter =isLocal
? Merger.merge(job, rfs,job.getMapOutputKeyClass(),
job.getMapOutputValueClass(), codec, getMapFiles(rfs, true),
!conf.getKeepFailedTaskFiles(), job.getInt("io.sort.factor",100),
newPath(getTaskID().toString()), job.getOutputKeyComparator(),
reporter,spilledRecordsCounter, null)
:reduceCopier.createKVIterator(job, rfs, reporter);
// free up the data structures
mapOutputFilesOnDisk.clear();
sortPhase.complete(); // sort is complete
setPhase(TaskStatus.Phase.REDUCE);
statusUpdate(umbilical);
Class keyClass =job.getMapOutputKeyClass();
Class valueClass =job.getMapOutputValueClass();
RawComparator comparator =job.getOutputValueGroupingComparator();
if (useNewApi) {
runNewReducer(job, umbilical,reporter, rIter, comparator,
keyClass,valueClass);
} else {
runOldReducer(job, umbilical,reporter, rIter, comparator,
keyClass,valueClass);
}
done(umbilical, reporter);
}
同样,在此我们只考虑当用户用新的API编写程序时的情况。所以我们只关注runNewReducer方法,其代码如下:
private <INKEY,INVALUE,OUTKEY,OUTVALUE>
void runNewReducer(JobConfjob,
finalTaskUmbilicalProtocol umbilical,
final TaskReporterreporter,
RawKeyValueIterator rIter,
RawComparator<INKEY>comparator,
Class<INKEY>keyClass,
Class<INVALUE>valueClass
) throwsIOException,InterruptedException,
ClassNotFoundException {
// wrapvalue iterator to report progress.
finalRawKeyValueIterator rawIter = rIter;
rIter =new RawKeyValueIterator() {
public void close() throws IOException {
rawIter.close();
}
public DataInputBuffer getKey() throws IOException {
return rawIter.getKey();
}
public Progress getProgress() {
return rawIter.getProgress();
}
public DataInputBuffer getValue() throws IOException {
return rawIter.getValue();
}
public boolean next() throws IOException {
boolean ret = rawIter.next();
reducePhase.set(rawIter.getProgress().get());
reporter.progress();
return ret;
}
};
/*TaskAttemptContext类继承于JobContext类,相对于JobContext类增加
了一些有关task的信息。通过taskContext对象可以获得很多与任务执行相
关的类,比如用户定义的Mapper类,InputFormat类等等*/
org.apache.hadoop.mapreduce.TaskAttemptContexttaskContext =
neworg.apache.hadoop.mapreduce.TaskAttemptContext(job, getTaskID());
//创建用户定义的Reduce类的实例
org.apache.hadoop.mapreduce.Reducer
<INKEY,INVALUE,OUTKEY,OUTVALUE>reducer =
(org.apache.hadoop.mapreduce.Reducer
<INKEY,INVALUE,OUTKEY,OUTVALUE>)
ReflectionUtils.newInstance(taskContext.getReducerClass(), job);
//创建用户指定的RecordWriter
org.apache.hadoop.mapreduce.RecordWriter
<OUTKEY,OUTVALUE> output =
(org.apache.hadoop.mapreduce.RecordWriter<OUTKEY,OUTVALUE>)
outputFormat.getRecordWriter(taskContext);
org.apache.hadoop.mapreduce.RecordWriter<OUTKEY,OUTVALUE>
trackedRW =
new NewTrackingRecordWriter<OUTKEY,OUTVALUE>
(output, reduceOutputCounter);
job.setBoolean("mapred.skip.on", isSkipping());
org.apache.hadoop.mapreduce.Reducer.Context
reducerContext = createReduceContext(reducer, job, getTaskID(),
rIter,reduceInputKeyCounter,
reduceInputValueCounter,
trackedRW, committer,
reporter, comparator, keyClass,
valueClass);
reducer.run(reducerContext);
output.close(reducerContext);
}
其中,reducer的run函数如下:
public void run(Context context) throws IOException, InterruptedException{
setup(context);
while (context.nextKey()) {
reduce(context.getCurrentKey(), context.getValues(), context);
}
cleanup(context);
}
该函数先调用setup函数,该函数默认是什么都不做,但是用户可以通过重写此函数来在运行reduce函数之前做一些初始化工作。然后程序会不断读取输入数据,交给reduce函数处理。这里的reduce函数就是用户所写的reduce函数。最后调用cleanup函数。默认的cleanup函数是没有做任何事情,但是用户可以通过重写此函数来进行一些收尾工作。
图 Reduce任务执行序列图
作者是在读了“觉先”的博客《Hadoop学习总结之四:Map-Reduce的过程解析》之后才从宏观上了解Hadoop MapReduce模块的工作原理,并且以此为蓝本,写出了本文。所以,在此向“觉先”表示敬意。另外本文当中可能有很多地方直接引用前述博文,在此特别声明,文中就不一一标注了
3.3 TaskTracker启动以及发送Heartbeat
3.4 JobTracker接收Heartbeat并向TaskTracker分配任务
3.5 TaskTracker接收HeartbeatResponse
该文档从源代码的级别剖析了Hadoop0.20.2版本的MapReduce模块的运行原理和流程,对JobTracker、TaskTracker的内部结构和交互流程做了详细介绍。系统地分析了Map程序和Reduce程序运行的原理。读者在阅读之后会对Hadoop MapReduce0.20.2版本源代码有一个大致的认识。
如果读者想只是想从原理上更加深入了解Hadoop MapReduce运行机制的话,只需要阅读第2章综述即可,该章节要求读者对HadoopMapReduce模型有系统的了解。
如果读者想深入了解HadoopMapReduce的源代码,则需阅读该文档第2、3节。阅读第3节需要读者熟练掌握Java语言的基本语法,并且对反射机制、动态代理有一定的了解。同时,还要求读者对于Hadoop HDFS和Hadoop RPC的基本用法有一定的了解。
另外,属性Hadoop源代码的最好方法是远程调试,有关远程调试的方法请读者去网上自行查阅资料。
Hadoop源代码分为三大模块:MapReduce、HDFS和Hadoop Common。其中MapReduce模块主要实现了MapReduce模型的相关功能;HDFS模块主要实现了HDFS的相关功能;而Hadoop Common主要实现了一些基础功能,比如说RPC、网络通信等。
在用户使用HadoopMapReduce模型进行并行计算时,用户只需要写好Map函数、Reduce函数,之后调用JobClient将Job提交即可。在JobTracker收到提交的Job之后,便会对Job进行一系列的配置,然后交给TaskTracker进行执行。执行完毕之后,JobTracker会通知JobClient任务完成,并将结果存入HDFS中
如图所示,用户提交Job是通过JobClient类的submitJob()函数实现的。在Hadoop源代码中,一个被提交了的Job由JobInProgress类的一个实例表示。该类封装了表示Job的各种信息,以及Job所需要执行的各种动作。在调用submitJob()函数之后,JobTracker会将作业加入到一个队列中去,这个队列的名字叫做jobInitQueue。然后,在JobTracker中,有一个名为JobQueueTaskScheduler的对象,会不断轮询jobInitQueue队列,一旦发现有新的Job加入,便将其取出,然后将其初始化。
在Hadoop代码中,一个Task由一个TaskInProgress类的实例表示。该类封装了描述Task所需的各种信息以及Task执行的各种动作。
TaskTracker自从启动以后,会每隔一段时间向JobTracker发送消息,消息的名称为“Heartbeat”。Heartbeat中包含了该TaskTracker当前的状态以及对Task的请求。JobTracker在收到Heartbeat之后,会检查该heartbeat的里所包含的各种信息,如果发现错误会启动相应的错误处理程序。如果TaskTracker在Heartbeat中添加了对Task的请求,则JobTracker会添加相应的指令在对Heartbeat的回复中。在Hadoop源代码中,JobTracker对TaskTracker的指令称为action,JobTracker对TaskTracker所发送来的Heartbeat的回复消息称为HeartbeatResponse。
在TaskTracker内部,有一个队列叫做TaskQueue。该中包含了所有新加入的Task。每当TaskTracker收到HeartbeatResponse后,会对其进行检查,如果其中包含了新的Task,便将其加入到TaskQueue中。在TaskTracker内部,有两个线程不断轮询TaskQueue,一个是MapLauncher,另一个是ReduceLauncher。如果发现有新加入的Map任务,MapLauncher便将其取出并且执行。如果是Reduce任务,ReduceLauncher便将其取出执行。
不论是Map Task还是Reduce Task,当他们被取出之后,都要进行本地化。本地化的意思就是将所有需要的信息,比如需要运行的jar文件、配置文件、输入数据等等,一起拷贝到本地的文件系统。这样做的目的是为了方便任务在某台机器上独立执行。本地化之后,TaskTracker会为每一个task单独创建一个jvm,然后单独运行。等Task运行完之后,TaskTracker会通知JobTracker任务完成,以进行下一步的动作。
等到所有的Task都完成之后,Job也就完成了,此时JobTracker会通知JobClient工作完成。
下面从用户使用Hadoop进行MapReduce计算的过程为线索,详细介绍Task执行的细节,并对Hadoop MapReduce的主要代码进行分析。
Hadoop集群的启动是通过在Master上运行start-all.sh脚本进行的。运行该脚本之后,Hadoop会配置一系列的环境变量以及其他Hadoop运行所需要的参数,然后在本机运行JobTracker和NameNode。然后通过SSH登录到所有slave机器上,启动TaskTracker和DataNode。
因为本文只介绍HadoopMapReduce模块,所以NameNode和DataNode的相关知识不再介绍。
org.apache.hadoop.mapred.JobTracker类实现了Hadoop MapReduce模型的JobTracker的功能,主要负责任务的接受,初始化,调度以及对TaskTracker的监控。
JobTracker单独作为一个JVM运行,main函数就是启动JobTracker的入口函数。在main函数中,有以下两行非常重要的代码:
startTracker(new JobConf());
JobTracker.offerService();
startTracker函数是一个静态函数,它调用JobTracker的构造函数生成一个JobTracker类的实例,名为result。然后,进行了一系列初始化活动,包括启动RPC server,启动内置的jetty服务器,检查是否需要重启JobTracker等。
在JobTracker.offerService()中,调用了taskScheduler对象的start()方法。该对象是JobTracker的一个数据成员,类型为TaskScheduler。该类型的提供了一系列接口,使得JobTracker可以对所有提交的job进行初始化以及调度。但是该类型实际上是一个抽象类型,其真正的实现类型为JobQueueTaskScheduler类,所以,taskScheduler.start()方法执行的是JobQueueTaskScheduler类的start方法。
该方法的详细代码如下:
public synchronized void start() throwsIOException {
//调用TaskScheduler.start()方法,实际上没有做任何事情
super.start();
//注册一个JobInProgressListerner监听器
taskTrackerManager.addJobInProgressListener(jobQueueJobInProgressListener
);
eagerTaskInitializationListener.setTaskTrackerManager(taskTrackerManager);
eagerTaskInitializationListener.start();
taskTrackerManager.addJobInProgressListener(eagerTaskInitializationListener)
}
JobQueueTaskScheduler类的start方法主要注册了两个非常重要的监听器:jobQueueJobInProgressListener和eagerTaskInitializationListener。前者是JobQueueJobInProgressListener类的一个实例,该类以先进先出的方式维持一个JobInProgress的队列,并且监听各个JobInProgress实例在生命周期中的变化;后者是EagerTaskInitializationListener类的一个实例,该类不断监听jobInitQueue,一旦发现有新的job被提交(即有新的JobInProgress实例被加入),则立即调用该实例的initTasks方法,对job进行初始化。
JobInProgress类的initTasks方法的主要代码如下:
public synchronized void initTasks() throwsIOException {
……
//从HDFS中读取job.split文件从而生成input splits
String jobFile = profile.getJobFile();
Path sysDir = newPath(this.jobtracker.getSystemDir());
FileSystem fs = sysDir.getFileSystem(conf);
DataInputStream splitFile =
fs.open(newPath(conf.get("mapred.job.split.file")));
JobClient.RawSplit[] splits;
try {
splits = JobClient.readSplitFile(splitFile);
} finally {
splitFile.close();
}
//map task的个数就是input split的个数
numMapTasks = splits.length;
//为每个map tasks生成一个TaskInProgress来处理一个input split
maps = newTaskInProgress[numMapTasks];
for(inti=0; i < numMapTasks; ++i) {
inputLength += splits[i].getDataLength();
maps[i] =new TaskInProgress(jobId, jobFile,
splits[i],
jobtracker, conf, this, i);
}
/*
对于map task,将其放入nonRunningMapCache,是一个Map<Node,
List<TaskInProgress>>,也即对于map task来讲,其将会被分配到其input
split所在的Node上。在此,Node代表一个datanode或者机架或者数据中
心。nonRunningMapCache将在JobTracker向TaskTracker分配map task的
时候使用。
*/
if(numMapTasks > 0) {
nonRunningMapCache = createCache(splits,maxLevel);
}
//创建reduce task
this.reduces = new TaskInProgress[numReduceTasks];
for (int i= 0; i < numReduceTasks; i++) {
reduces[i]= new TaskInProgress(jobId, jobFile,
numMapTasks, i,
jobtracker, conf, this);
/*reducetask放入nonRunningReduces,其将在JobTracker向TaskTracker
分配reduce task的时候使用。*/
nonRunningReduces.add(reduces[i]);
}
//创建两个cleanup task,一个用来清理map,一个用来清理reduce.
cleanup =new TaskInProgress[2];
cleanup[0]= new TaskInProgress(jobId, jobFile, splits[0],
jobtracker, conf, this, numMapTasks);
cleanup[0].setJobCleanupTask();
cleanup[1]= new TaskInProgress(jobId, jobFile, numMapTasks,
numReduceTasks, jobtracker, conf, this);
cleanup[1].setJobCleanupTask();
//创建两个初始化 task,一个初始化map,一个初始化reduce.
setup =new TaskInProgress[2];
setup[0] =new TaskInProgress(jobId, jobFile, splits[0],
jobtracker,conf, this, numMapTasks + 1 );
setup[0].setJobSetupTask();
setup[1] =new TaskInProgress(jobId, jobFile, numMapTasks,
numReduceTasks + 1, jobtracker, conf, this);
setup[1].setJobSetupTask();
tasksInited.set(true);//初始化完毕
……
}
org.apache.hadoop.mapred.TaskTracker类实现了MapReduce模型中TaskTracker的功能。
TaskTracker也是作为一个单独的JVM来运行的,其main函数就是TaskTracker的入口函数,当运行start-all.sh时,脚本就是通过SSH运行该函数来启动TaskTracker的。
Main函数中最重要的语句是:
new TaskTracker(conf).run();
其中run函数主要调用了offerService函数:
State offerService() throws Exception {
longlastHeartbeat = 0;
//TaskTracker进行是一直存在的
while(running && !shuttingDown) {
……
longnow = System.currentTimeMillis();
//每隔一段时间就向JobTracker发送heartbeat
longwaitTime = heartbeatInterval - (now - lastHeartbeat);
if(waitTime > 0) {
synchronized(finishedCount) {
if (finishedCount[0] == 0) {
finishedCount.wait(waitTime);
}
finishedCount[0] = 0;
}
}
……
//发送Heartbeat到JobTracker,得到response
HeartbeatResponse heartbeatResponse = transmitHeartBeat(now);
……
//从Response中得到此TaskTracker需要做的事情
TaskTrackerAction[] actions = heartbeatResponse.getActions();
……
if(actions != null){
for(TaskTrackerAction action: actions) {
if (action instanceof LaunchTaskAction) {
//如果是运行一个新的Task,则将Action添加到任务队列中
addToTaskQueue((LaunchTaskAction)action);
}else if (action instanceof CommitTaskAction) {
CommitTaskAction commitAction = (CommitTaskAction)action;
if (!commitResponses.contains(commitAction.getTaskID())) {
commitResponses.add(commitAction.getTaskID());
}
}else {
tasksToCleanup.put(action);
}
}
}
}
returnState.NORMAL;
}
其中transmitHeartBeat函数的作用就是第2章中提到的向JobTracker发送Heartbeat。其主要逻辑如下:
private HeartbeatResponse transmitHeartBeat(longnow) throws IOException {
//每隔一段时间,在heartbeat中要返回给JobTracker一些统计信息
booleansendCounters;
if (now> (previousUpdate + COUNTER_UPDATE_INTERVAL)) {
sendCounters = true;
previousUpdate = now;
}
else {
sendCounters = false;
}
……
//报告给JobTracker,此TaskTracker的当前状态
if(status == null) {
synchronized (this) {
status = new TaskTrackerStatus(taskTrackerName, localHostname,
httpPort,
cloneAndResetRunningTaskStatuses(
sendCounters),
failures,
maxCurrentMapTasks,
maxCurrentReduceTasks);
}
}
……
//当满足下面的条件的时候,此TaskTracker请求JobTracker为其分配一个新的Task来运行:
//当前TaskTracker正在运行的map task的个数小于可以运行的map task的最大个数
//当前TaskTracker正在运行的reduce task的个数小于可以运行的reduce task的最大个数
booleanaskForNewTask;
longlocalMinSpaceStart;
synchronized (this) {
askForNewTask = (status.countMapTasks() < maxCurrentMapTasks ||
status.countReduceTasks() <maxCurrentReduceTasks)
&& acceptNewTasks;
localMinSpaceStart = minSpaceStart;
}
……
//向JobTracker发送heartbeat,这是一个RPC调用
HeartbeatResponse heartbeatResponse = jobClient.heartbeat(status,
justStarted, askForNewTask,
heartbeatResponseId);
……
returnheartbeatResponse;
}
当JobTracker被RPC调用来发送heartbeat的时候,JobTracker的heartbeat(TaskTrackerStatus status,boolean initialContact, booleanacceptNewTasks, short responseId)函数被调用:
public synchronized HeartbeatResponseheartbeat(TaskTrackerStatus status,
boolean initialContact, boolean acceptNewTasks,short responseId)
throws IOException{
……
StringtrackerName = status.getTrackerName();
……
shortnewResponseId = (short)(responseId + 1);
……
HeartbeatResponse response = newHeartbeatResponse(newResponseId, null);
List<TaskTrackerAction> actions = new ArrayList<TaskTrackerAction>();
//如果TaskTracker向JobTracker请求一个task运行
if(acceptNewTasks) {
TaskTrackerStatus taskTrackerStatus = getTaskTracker(trackerName);
if(taskTrackerStatus == null) {
LOG.warn("Unknown task tracker polling; ignoring: " +trackerName);
} else{
//setup和cleanup的task优先级最高
List<Task> tasks = getSetupAndCleanupTasks(taskTrackerStatus);
if(tasks == null ) {
//任务调度器分配任务
tasks = taskScheduler.assignTasks(taskTrackerStatus);
}
if(tasks != null) {
for(Task task : tasks) {
//将任务放入actions列表,返回给TaskTracker
expireLaunchingTasks.addNewTask(task.getTaskID());
actions.add(new LaunchTaskAction(task));
}
}
}
}
……
intnextInterval = getNextHeartbeatInterval();
response.setHeartbeatInterval(nextInterval);
response.setActions(
actions.toArray(newTaskTrackerAction[actions.size()]));
……
returnresponse;
}
默认的任务调度器为JobQueueTaskScheduler,其assignTasks如下:
public synchronized List<Task>assignTasks(TaskTrackerStatus taskTracker)
throwsIOException {
ClusterStatus clusterStatus = taskTrackerManager.getClusterStatus();
intnumTaskTrackers = clusterStatus.getTaskTrackers();
Collection<JobInProgress> jobQueue
= jobQueueJobInProgressListener.getJobQueue();
intmaxCurrentMapTasks = taskTracker.getMaxMapTasks();
intmaxCurrentReduceTasks = taskTracker.getMaxReduceTasks();
intnumMaps = taskTracker.countMapTasks();
intnumReduces = taskTracker.countReduceTasks();
//计算剩余的map和reduce的工作量:remaining
intremainingReduceLoad = 0;
intremainingMapLoad = 0;
synchronized (jobQueue) {
for(JobInProgress job : jobQueue) {
if(job.getStatus().getRunState() == JobStatus.RUNNING) {
inttotalMapTasks = job.desiredMaps();
inttotalReduceTasks = job.desiredReduces();
remainingMapLoad += (totalMapTasks - job.finishedMaps());
remainingReduceLoad += (totalReduceTasks -job.finishedReduces());
}
}
}
//计算平均每个TaskTracker应有的工作量,remaining/numTaskTrackers是剩余的工作量除以TaskTracker的个数。
intmaxMapLoad = 0;
intmaxReduceLoad = 0;
if(numTaskTrackers > 0) {
maxMapLoad = Math.min(maxCurrentMapTasks,
(int)Math.ceil((double) remainingMapLoad numTaskTrackers));
maxReduceLoad = Math.min(maxCurrentReduceTasks,
(int)Math.ceil((double) remainingReduceLoad
numTaskTrackers));
}
……
//map优先于reduce,当TaskTracker上运行的map task数目小于平均的工作量,则向其分配map task
if(numMaps < maxMapLoad) {
inttotalNeededMaps = 0;
synchronized (jobQueue) {
for(JobInProgress job : jobQueue) {
if(job.getStatus().getRunState() != JobStatus.RUNNING) {
continue;
}
Task t = job.obtainNewMapTask(taskTracker,numTaskTrackers,
taskTrackerManager.getNumberOfUniqueHosts());
if(t != null) {
return Collections.singletonList(t);
}
……
}
}
}
//分配完map task,再分配reduce task
if(numReduces < maxReduceLoad) {
inttotalNeededReduces = 0;
synchronized (jobQueue) {
for(JobInProgress job : jobQueue) {
if(job.getStatus().getRunState() != JobStatus.RUNNING ||
job.numReduceTasks == 0) {
continue;
}
Task t = job.obtainNewReduceTask(taskTracker, numTaskTrackers,
taskTrackerManager.getNumberOfUniqueHosts());
if(t != null) {
return Collections.singletonList(t);
}
……
}
}
}
returnnull;
}
从上面的代码中我们可以知道,JobInProgress的obtainNewMapTask是用来分配map task的,其主要调用findNewMapTask,根据TaskTracker所在的Node从nonRunningMapCache中查找TaskInProgress。JobInProgress的obtainNewReduceTask是用来分配reduce task的,其主要调用findNewReduceTask,从nonRunningReduces查找TaskInProgress。
在向JobTracker发送heartbeat后,如果返回的reponse中含有分配好的任务LaunchTaskAction,TaskTracker则调用addToTaskQueue方法,将其加入TaskTracker类中MapLauncher或者ReduceLauncher对象的taskToLaunch队列。在此,MapLauncher和ReduceLauncher对象均为TaskLauncher类的实例。该类是TaskTracker类的一个内部类,具有一个数据成员,是TaskTracker.TaskInProgress类型的队列。在此特别注意,在TaskTracker类内部所提到的TaskInProgress类均为TaskTracker的内部类,我们用TaskTracker.TaskInProgress表示,一定要和MapRed包中的TaskInProgress类区分,后者我们直接用TaskInProgress表示。如果应答包中包含的任务是map task则放入mapLancher的taskToLaunch队列,如果是reduce task则放入reduceLancher的taskToLaunch队列:
private void addToTaskQueue(LaunchTaskActionaction) {
if(action.getTask().isMapTask()) {
mapLauncher.addToTaskQueue(action);
} else {
reduceLauncher.addToTaskQueue(action);
}
}
TaskLauncher类的addToTaskQueue方法代码如下:
private TaskInProgress registerTask(LaunchTaskAction action,
TaskLauncher launcher) {
//从action中获取Task对象
Task t = action.getTask();
LOG.info("LaunchTaskAction(registerTask): " + t.getTaskID() +
" task's state:" + t.getState());
//生成TaskTracker.TaskInProgress对象
TaskInProgress tip = new TaskInProgress(t, this.fConf, launcher);
synchronized(this){
/*在相应的数据结构中增加所生成的TaskTracker.TaskInProgress对
象,以通知程序其他部分该任务的建立*/
tasks.put(t.getTaskID(),tip);
runningTasks.put(t.getTaskID(),tip);
boolean isMap =t.isMapTask();
if (isMap) {
mapTotal++;
} else {
reduceTotal++;
}
}
return tip;
}
同时,TaskLauncher类继承了Thread类,所以在程序运行过程中,它们各自都以一个线程独立运行。它们的启动在TaskTracker初始化过程中已经完成。该类的run函数就是不断监测taskToLaunch队列中是否有新的TaskTracker.TaskInProgress对象加入。如果有则从中取出一个对象,然后调用TaskTracker类的startNewTask(TaskInProgress tip)来启动一个task,其又主要调用了localizeJob(TaskInProgresstip),该函数的工作就是第二节中提到的本地化。该函数代码如下:
private void localizeJob(TaskInProgress tip)throws IOException {
//首先要做的一件事情是有关Task的文件从HDFS拷贝的TaskTracker的本地文件系统中:job.split,job.xml以及job.jar
PathlocalJarFile = null;
Task t =tip.getTask();
JobIDjobId = t.getJobID();
PathjobFile = new Path(t.getJobFile());
……
PathlocalJobFile = lDirAlloc.getLocalPathForWrite(
getLocalJobDir(jobId.toString())
+ Path.SEPARATOR + "job.xml",
jobFileSize, fConf);
RunningJob rjob = addTaskToJob(jobId, tip);
synchronized (rjob) {
if(!rjob.localized) {
FileSystem localFs = FileSystem.getLocal(fConf);
PathjobDir = localJobFile.getParent();
……
//将job.split拷贝到本地
systemFS.copyToLocalFile(jobFile, localJobFile);
JobConf localJobConf = new JobConf(localJobFile);
PathworkDir = lDirAlloc.getLocalPathForWrite(
(getLocalJobDir(jobId.toString())
+ Path.SEPARATOR +"work"), fConf);
if(!localFs.mkdirs(workDir)) {
throw new IOException("Mkdirs failed to create "
+ workDir.toString());
}
System.setProperty("job.local.dir", workDir.toString());
localJobConf.set("job.local.dir", workDir.toString());
//copy Jar file to the local FS and unjar it.
String jarFile = localJobConf.getJar();
longjarFileSize = -1;
if(jarFile != null) {
Path jarFilePath = new Path(jarFile);
localJarFile = new Path(lDirAlloc.getLocalPathForWrite(
getLocalJobDir(jobId.toString())
+Path.SEPARATOR + "jars",
5 *jarFileSize, fConf), "job.jar");
if(!localFs.mkdirs(localJarFile.getParent())) {
throw new IOException("Mkdirs failed to create jars directory");
}
//将job.jar拷贝到本地
systemFS.copyToLocalFile(jarFilePath, localJarFile);
localJobConf.setJar(localJarFile.toString());
//将job得configuration写成job.xml
OutputStream out = localFs.create(localJobFile);
try{
localJobConf.writeXml(out);
}finally {
out.close();
}
// 解压缩job.jar
RunJar.unJar(new File(localJarFile.toString()),
newFile(localJarFile.getParent().toString()));
}
rjob.localized = true;
rjob.jobConf = localJobConf;
}
}
//真正的启动此Task
launchTaskForJob(tip, new JobConf(rjob.jobConf));
}
当所有的task运行所需要的资源都拷贝到本地后,则调用TaskTracker的launchTaskForJob方法,其又调用TaskTracker.TaskInProgress的launchTask函数:
public synchronized void launchTask() throwsIOException {
……
//创建task运行目录
localizeTask(task);
if(this.taskStatus.getRunState() == TaskStatus.State.UNASSIGNED) {
this.taskStatus.setRunState(TaskStatus.State.RUNNING);
}
//创建并启动TaskRunner,对于MapTask,创建的是MapTaskRunner,对于ReduceTask,创建的是ReduceTaskRunner
this.runner = task.createRunner(TaskTracker.this, this);
this.runner.start();
this.taskStatus.setStartTime(System.currentTimeMillis());
}
TaskRunner是抽象类,是Thread类的子类,其run函数如下:
public final void run() {
……
TaskAttemptID taskid = t.getTaskID();
LocalDirAllocator lDirAlloc = newLocalDirAllocator("mapred.local.dir");
FilejobCacheDir = null;
if(conf.getJar() != null) {
jobCacheDir = new File(
newPath(conf.getJar()).getParent().toString());
}
File workDir = newFile(lDirAlloc.getLocalPathToRead(
TaskTracker.getLocalTaskDir(
t.getJobID().toString(),
t.getTaskID().toString(),
t.isTaskCleanupTask())
+ Path.SEPARATOR + MRConstants.WORKDIR,
conf).toString());
FileSystem fileSystem;
PathlocalPath;
……
//拼写classpath
StringbaseDir;
Stringsep = System.getProperty("path.separator");
StringBuffer classPath = new StringBuffer();
//start with same classpath as parent process
classPath.append(System.getProperty("java.class.path"));
classPath.append(sep);
if(!workDir.mkdirs()) {
if(!workDir.isDirectory()) {
LOG.fatal("Mkdirs failed to create " + workDir.toString());
}
}
Stringjar = conf.getJar();
if (jar!= null) {
// ifjar exists, it into workDir
File[] libs = new File(jobCacheDir, "lib").listFiles();
if(libs != null) {
for(int i = 0; i < libs.length; i++) {
classPath.append(sep); //add libs from jar to classpath
classPath.append(libs[i]);
}
}
classPath.append(sep);
classPath.append(new File(jobCacheDir, "classes"));
classPath.append(sep);
classPath.append(jobCacheDir);
}
……
classPath.append(sep);
classPath.append(workDir);
//拼写命令行java及其参数
Vector<String> vargs = new Vector<String>(8);
Filejvm =
newFile(new File(System.getProperty("java.home"), "bin"),"java");
vargs.add(jvm.toString());
StringjavaOpts = conf.get("mapred.child.java.opts", "-Xmx200m");
javaOpts = javaOpts.replace("@taskid@", taskid.toString());
String[] javaOptsSplit = javaOpts.split(" ");
StringlibraryPath = System.getProperty("java.library.path");
if(libraryPath == null) {
libraryPath = workDir.getAbsolutePath();
} else{
libraryPath += sep + workDir;
}
booleanhasUserLDPath = false;
for(inti=0; i<javaOptsSplit.length ;i++) {
if(javaOptsSplit[i].startsWith("-Djava.library.path=")) {
javaOptsSplit[i] += sep + libraryPath;
hasUserLDPath = true;
break;
}
}
if(!hasUserLDPath) {
vargs.add("-Djava.library.path=" + libraryPath);
}
for(int i = 0; i < javaOptsSplit.length; i++) {
vargs.add(javaOptsSplit[i]);
}
//添加Child进程的临时文件夹
Stringtmp = conf.get("mapred.child.tmp", "./tmp");
PathtmpDir = new Path(tmp);
if(!tmpDir.isAbsolute()) {
tmpDir = new Path(workDir.toString(), tmp);
}
FileSystem localFs = FileSystem.getLocal(conf);
if(!localFs.mkdirs(tmpDir) && !localFs.getFileStatus(tmpDir).isDir()) {
thrownew IOException("Mkdirs failed to create " + tmpDir.toString());
}
vargs.add("-Djava.io.tmpdir=" + tmpDir.toString());
// Addclasspath.
vargs.add("-classpath");
vargs.add(classPath.toString());
//log文件夹
longlogSize = TaskLog.getTaskLogLength(conf);
vargs.add("-Dhadoop.log.dir=" +
newFile(System.getProperty("hadoop.log.dir")
).getAbsolutePath());
vargs.add("-Dhadoop.root.logger=INFO,TLA");
vargs.add("-Dhadoop.tasklog.taskid=" + taskid);
vargs.add("-Dhadoop.tasklog.totalLogFileSize=" + logSize);
// 运行map task和reduce task的子进程的main class是Child
vargs.add(Child.class.getName());// main of Child
……
//运行子进程
jvmManager.launchJvm(this,
jvmManager.constructJvmEnv(setup,vargs,stdout,stderr,logSize,
workDir, env, pidFile, conf));
}
在程序运行过程中,实际运行的TaskRunner实例应该是MapTaskRunner或者是ReduceTaskRunner。这两个子类只对TaskRunner进行了简单修改,在此不做赘述。
在jvmManager.launchJvm()方法中,程序将创建一个新的jvm,来执行新的程序。
真正的map task和reduce task都是在Child进程中运行的,Child的main函数的主要逻辑如下:
while (true) {
//从TaskTracker通过网络通信得到JvmTask对象
JvmTaskmyTask = umbilical.getTask(jvmId);
……
idleLoopCount = 0;
task =myTask.getTask();
taskid =task.getTaskID();
isCleanup= task.isTaskCleanupTask();
JobConfjob = new JobConf(task.getJobFile());
TaskRunner.setupWorkDir(job);
numTasksToExecute = job.getNumTasksToExecutePerJvm();
task.setConf(job);
defaultConf.addResource(newPath(task.getJobFile()));
……
//运行task
task.run(job, umbilical);// run the task
if(numTasksToExecute > 0 && ++numTasksExecuted ==
numTasksToExecute){
break;
}
}
如果task是MapTask,则其run函数如下:
public void run(final JobConf job, finalTaskUmbilicalProtocol umbilical)
throws IOException,ClassNotFoundException, InterruptedException {
//负责与TaskTracker的通信,通过该对象可以获得必要的对象
this.umbilical = umbilical;
// 启动Reporter线程,用来和TaskTracker交互目前运行的状态
TaskReporter reporter = new TaskReporter(getProgress(), umbilical);
reporter.startCommunicationThread();
boolean useNewApi =job.getUseNewMapper();
/*用来初始化任务,主要是进行一些和任务输出相关的设置,比如创
建commiter,设置工作目录等*/
initialize(job, getJobID(),reporter, useNewApi);
/*以下4个if语句均是根据任务类型的不同进行相应的操作,这些方
法均是Task类的方法,所以与任务是MapTask还是ReduceTask无关*/
if(jobCleanup) {
runJobCleanupTask(umbilical,reporter);
return;
}
if(jobSetup) {
//主要是创建工作目录的FileSystem对象
runJobSetupTask(umbilical,reporter);
return;
}
if(taskCleanup) {
//设置任务目前所处的阶段为结束阶段,并且删除工作目录
runTaskCleanupTask(umbilical,reporter);
return;
}
//如果不是上述四种类型,则真正运行任务
if (useNewApi) {
runNewMapper(job, split, umbilical,reporter);
} else {
runOldMapper(job, split, umbilical, reporter);
}
done(umbilical, reporter);
}
其中,我们只研究运用新API编写程序的情况,所以runOldMapper函数我们将不做考虑。runNewMapper的代码如下:
private <INKEY,INVALUE,OUTKEY,OUTVALUE>
voidrunNewMapper(
final JobConf job,
final BytesWritable rawSplit,
final TaskUmbilicalProtocol umbilical,
TaskReporter reporter
) throws IOException, ClassNotFoundException, InterruptedException{
/*TaskAttemptContext类继承于JobContext类,相对于JobContext类增加
了一些有关task的信息。通过taskContext对象可以获得很多与任务执行相
关的类,比如用户定义的Mapper类,InputFormat类等等*/
org.apache.hadoop.mapreduce.TaskAttemptContexttaskContext =
new org.apache.hadoop.mapreduce.TaskAttemptContext(job,getTaskID());
//创建用户自定义的Mapper类的实例
org.apache.hadoop.mapreduce.Mapper
<INKEY,INVALUE,OUTKEY,OUTVALUE> mapper=
org.apache.hadoop.mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE>) ReflectionUtils.newInstance(taskContext.getMapperClass(),job);
// 创建用户指定的InputFormat类的实例
org.apache.hadoop.mapreduce.InputFormat<INKEY,INVALUE> inputFormat=(org.apache.hadoop.mapreduce.InputFormat<INKEY,INVALUE>)
ReflectionUtils.newInstance(taskContext.getInputFormatClass(),job);
// 重新生成InputSplit
org.apache.hadoop.mapreduce.InputSplit split =null;
DataInputBuffer splitBuffer =new DataInputBuffer();
splitBuffer.reset(rawSplit.getBytes(), 0, rawSplit.getLength());
SerializationFactory factory =new SerializationFactory(job);
Deserializer<? extendsorg.apache.hadoop.mapreduce.InputSplit>
deserializer =
(Deserializer<? extendsorg.apache.hadoop.mapreduce.InputSplit>)
factory.getDeserializer(job.getClassByName(splitClass));
deserializer.open(splitBuffer);
split =deserializer.deserialize(null);
//根据InputFormat对象创建RecordReader对象,默认是LineRecordReader
org.apache.hadoop.mapreduce.RecordReader<INKEY,INVALUE> input =
new NewTrackingRecordReader<INKEY,INVALUE>
(inputFormat.createRecordReader(split, taskContext), reporter);
job.setBoolean("mapred.skip.on", isSkipping());
//生成RecordWriter对象
org.apache.hadoop.mapreduce.RecordWriter output = null;
org.apache.hadoop.mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE>.Context mapperContext = null;
try {
Constructor<org.apache.hadoop.mapreduce.Mapper.Context>
contextConstructor =
org.apache.hadoop.mapreduce.Mapper.Context.class.getConstructor
(newClass[]{org.apache.hadoop.mapreduce.Mapper.class,
Configuration.class,
org.apache.hadoop.mapreduce.TaskAttemptID.class,
org.apache.hadoop.mapreduce.RecordReader.class,
org.apache.hadoop.mapreduce.RecordWriter.class,
org.apache.hadoop.mapreduce.OutputCommitter.class,
org.apache.hadoop.mapreduce.StatusReporter.class,
org.apache.hadoop.mapreduce.InputSplit.class});
//get an output object
if(job.getNumReduceTasks() == 0) {
output = newNewDirectOutputCollector(taskContext, job,
umbilical, reporter);
} else{
output = new NewOutputCollector(taskContext, job, umbilical,
reporter);
}
mapperContext = contextConstructor.newInstance(mapper, job,
getTaskID(), input, output, committer, reporter, split);
/*初始化,在默认情况下调用的是LineRecordReader的initialize方
法,主要是打开输入文件并且将文件指针指向文件头*/
input.initialize(split, mapperContext);
mapper.run(mapperContext); //运行真正的Mapper类
input.close();
output.close(mapperContext);
} catch(NoSuchMethodException e) {
thrownew IOException("Can't find Context constructor", e);
} catch(InstantiationException e) {
thrownew IOException("Can't create Context", e);
} catch(InvocationTargetException e) {
thrownew IOException("Can't invoke Context constructor", e);
} catch(IllegalAccessException e) {
thrownew IOException("Can't invoke Context constructor", e);
}
}
其中mapper.run方法调用的是Mapper类的run方法。这也是用户要实现map方法所需要继承的类。该类的run方法代码如下:
public void run(Context context) throws IOException, InterruptedException{
setup(context);
while (context.nextKeyValue()){
map(context.getCurrentKey(),context.getCurrentValue(), context);
}
cleanup(context);
}
该方法首先调用了setup方法,这个方法在Mapper当中实际上是什么也没有做。用户可重写此方法让程序在执行map函数之前进行一些其他操作。然后,程序将不断获取键值对交给map函数处理,也就是用户所希望进行的操作。之后,程序调用cleanup函数。这个方法和setup一样,也是Mapper类的一个方法,但是实际上什么也没有做。用户可以重写此方法进行一些收尾工作。
如果运行的任务是ReduceTask,则其run函数如下:
public void run(JobConfjob, final TaskUmbilicalProtocol umbilical)
throws IOException,InterruptedException, ClassNotFoundException {
this.umbilical = umbilical;
job.setBoolean("mapred.skip.on", isSkipping());
/*添加reduce过程需要经过的几个阶段。以便通知TaskTracker目前运
行的情况*/
if (isMapOrReduce()) {
copyPhase =getProgress().addPhase("copy");
sortPhase = getProgress().addPhase("sort");
reducePhase =getProgress().addPhase("reduce");
}
// 设置并启动reporter进程以便和TaskTracker进行交流
TaskReporter reporter = newTaskReporter(getProgress(), umbilical);
reporter.startCommunicationThread();
boolean useNewApi =job.getUseNewReducer();
/*用来初始化任务,主要是进行一些和任务输出相关的设置,比如创
建commiter,设置工作目录等*/
initialize(job, getJobID(), reporter,useNewApi);
/*以下4个if语句均是根据任务类型的不同进行相应的操作,这些方
法均是Task类的方法,所以与任务是MapTask还是ReduceTask无关*/
if(jobCleanup) {
runJobCleanupTask(umbilical, reporter);
return;
}
if(jobSetup) {
//主要是创建工作目录的FileSystem对象
runJobSetupTask(umbilical, reporter);
return;
}
if(taskCleanup) {
//设置任务目前所处的阶段为结束阶段,并且删除工作目录
runTaskCleanupTask(umbilical, reporter);
return;
}
//Initialize the codec
codec =initCodec();
boolean isLocal ="local".equals(job.get("mapred.job.tracker","local"));
if (!isLocal) {
//ReduceCopier对象负责将Map函数的输出拷贝至Reduce所在机器
reduceCopier = newReduceCopier(umbilical, job, reporter);
//fetchOutputs函数负责拷贝各个Map函数的输出
if (!reduceCopier.fetchOutputs()){
if(reduceCopier.mergeThrowable instanceof FSError) {
throw(FSError)reduceCopier.mergeThrowable;
}
throw newIOException("Task: " + getTaskID() +
" - The reducecopier failed", reduceCopier.mergeThrowable);
}
}
copyPhase.complete(); // copy is already complete
setPhase(TaskStatus.Phase.SORT);
statusUpdate(umbilical);
final FileSystem rfs =FileSystem.getLocal(job).getRaw();
//根据JobTracker是否在本地来决定调用哪种排序方式
RawKeyValueIterator rIter =isLocal
? Merger.merge(job, rfs,job.getMapOutputKeyClass(),
job.getMapOutputValueClass(), codec, getMapFiles(rfs, true),
!conf.getKeepFailedTaskFiles(), job.getInt("io.sort.factor",100),
newPath(getTaskID().toString()), job.getOutputKeyComparator(),
reporter,spilledRecordsCounter, null)
:reduceCopier.createKVIterator(job, rfs, reporter);
// free up the data structures
mapOutputFilesOnDisk.clear();
sortPhase.complete(); // sort is complete
setPhase(TaskStatus.Phase.REDUCE);
statusUpdate(umbilical);
Class keyClass =job.getMapOutputKeyClass();
Class valueClass =job.getMapOutputValueClass();
RawComparator comparator =job.getOutputValueGroupingComparator();
if (useNewApi) {
runNewReducer(job, umbilical,reporter, rIter, comparator,
keyClass,valueClass);
} else {
runOldReducer(job, umbilical,reporter, rIter, comparator,
keyClass,valueClass);
}
done(umbilical, reporter);
}
同样,在此我们只考虑当用户用新的API编写程序时的情况。所以我们只关注runNewReducer方法,其代码如下:
private <INKEY,INVALUE,OUTKEY,OUTVALUE>
void runNewReducer(JobConfjob,
finalTaskUmbilicalProtocol umbilical,
final TaskReporterreporter,
RawKeyValueIterator rIter,
RawComparator<INKEY>comparator,
Class<INKEY>keyClass,
Class<INVALUE>valueClass
) throwsIOException,InterruptedException,
ClassNotFoundException {
// wrapvalue iterator to report progress.
finalRawKeyValueIterator rawIter = rIter;
rIter =new RawKeyValueIterator() {
public void close() throws IOException {
rawIter.close();
}
public DataInputBuffer getKey() throws IOException {
return rawIter.getKey();
}
public Progress getProgress() {
return rawIter.getProgress();
}
public DataInputBuffer getValue() throws IOException {
return rawIter.getValue();
}
public boolean next() throws IOException {
boolean ret = rawIter.next();
reducePhase.set(rawIter.getProgress().get());
reporter.progress();
return ret;
}
};
/*TaskAttemptContext类继承于JobContext类,相对于JobContext类增加
了一些有关task的信息。通过taskContext对象可以获得很多与任务执行相
关的类,比如用户定义的Mapper类,InputFormat类等等*/
org.apache.hadoop.mapreduce.TaskAttemptContexttaskContext =
neworg.apache.hadoop.mapreduce.TaskAttemptContext(job, getTaskID());
//创建用户定义的Reduce类的实例
org.apache.hadoop.mapreduce.Reducer
<INKEY,INVALUE,OUTKEY,OUTVALUE>reducer =
(org.apache.hadoop.mapreduce.Reducer
<INKEY,INVALUE,OUTKEY,OUTVALUE>)
ReflectionUtils.newInstance(taskContext.getReducerClass(), job);
//创建用户指定的RecordWriter
org.apache.hadoop.mapreduce.RecordWriter
<OUTKEY,OUTVALUE> output =
(org.apache.hadoop.mapreduce.RecordWriter<OUTKEY,OUTVALUE>)
outputFormat.getRecordWriter(taskContext);
org.apache.hadoop.mapreduce.RecordWriter<OUTKEY,OUTVALUE>
trackedRW =
new NewTrackingRecordWriter<OUTKEY,OUTVALUE>
(output, reduceOutputCounter);
job.setBoolean("mapred.skip.on", isSkipping());
org.apache.hadoop.mapreduce.Reducer.Context
reducerContext = createReduceContext(reducer, job, getTaskID(),
rIter,reduceInputKeyCounter,
reduceInputValueCounter,
trackedRW, committer,
reporter, comparator, keyClass,
valueClass);
reducer.run(reducerContext);
output.close(reducerContext);
}
其中,reducer的run函数如下:
public void run(Context context) throws IOException, InterruptedException{
setup(context);
while (context.nextKey()) {
reduce(context.getCurrentKey(), context.getValues(), context);
}
cleanup(context);
}
该函数先调用setup函数,该函数默认是什么都不做,但是用户可以通过重写此函数来在运行reduce函数之前做一些初始化工作。然后程序会不断读取输入数据,交给reduce函数处理。这里的reduce函数就是用户所写的reduce函数。最后调用cleanup函数。默认的cleanup函数是没有做任何事情,但是用户可以通过重写此函数来进行一些收尾工作。
图 Reduce任务执行序列图
作者是在读了“觉先”的博客《Hadoop学习总结之四:Map-Reduce的过程解析》之后才从宏观上了解Hadoop MapReduce模块的工作原理,并且以此为蓝本,写出了本文。所以,在此向“觉先”表示敬意。另外本文当中可能有很多地方直接引用前述博文,在此特别声明,文中就不一一标注了