//
mass:质量
moment:力矩,当他碰到另一个刚体时候 ,会产生一股扭转力,做旋转运动
body:刚体,表示物理世界中的抽象实体,附带有物理属性
shape:刚体的形状,同一个body可以附加多个shape 该shape们不会发生碰撞
joint:关节,可以连接>=2个刚体
/** 创建一个body mass和moment为默认值 */
static PhysicsBody* create();
/** 创建一个质量为mass的body moment为默认值. */
static PhysicsBody* create(float mass);
/** 创建一个body 并为mass 和moment赋值 */
static PhysicsBody* create(float mass, float moment);
/**创建一个shape为圆形的body */
static PhysicsBody* createCircle(float radius, const PhysicsMaterial& material = PHYSICSBODY_MATERIAL_DEFAULT, const Point& offset = Point::ZERO);
/** 创建一个shape为四边形的body. */
static PhysicsBody* createBox(const Size& size, const PhysicsMaterial& material = PHYSICSBODY_MATERIAL_DEFAULT, const Point& offset = Point::ZERO);
/**创建一个动态多边形刚体,多边形的顶点存放在Point array[ ]中 示例:Point array[ ]={ point(1,1),point(2,2)} 注意:顶点必须按顺时针存放,并且图形为凸状,不能是凹的*/
static PhysicsBody* createPolygon(const Point* points, int count, const PhysicsMaterial& material = PHYSICSBODY_MATERIAL_DEFAULT, const Point& offset = Point::ZERO);
/** 创建一个静态的线状刚体. */
static PhysicsBody* createEdgeSegment(const Point& a, const Point& b, const PhysicsMaterial& material = PHYSICSBODY_MATERIAL_DEFAULT, float border = 1);
/** 创建一个静态四边形刚体. */
static PhysicsBody* createEdgeBox(const Size& size, const PhysicsMaterial& material = PHYSICSBODY_MATERIAL_DEFAULT, float border = 1, const Point& offset = Point::ZERO);
/** 创建一个静态多边形刚体. */
static PhysicsBody* createEdgePolygon(const Point* points, int count, const PhysicsMaterial& material = PHYSICSBODY_MATERIAL_DEFAULT, float border = 1);
/** 创建一个链条状刚体 */
static PhysicsBody* createEdgeChain(const Point* points, int count, const PhysicsMaterial& material = PHYSICSBODY_MATERIAL_DEFAULT, float border = 1);
/*
添加一个shape mass和moment赋值true
*/
virtual PhysicsShape* addShape(PhysicsShape* shape, bool addMassAndMoment = true);
/*通过shape移除shape*/
void removeShape(PhysicsShape* shape, bool reduceMassAndMoment = true);
/*通过tag移除shape*/
void removeShape(int tag, bool reduceMassAndMoment = true);
/* 移除body的所有shape */
void removeAllShapes(bool reduceMassAndMoment = true);
/* 获取body的shapes */
inline const Vector<PhysicsShape*>& getShapes() const { return _shapes; }
/* 获取第一个shape. */
inline PhysicsShape* getFirstShape() const { return _shapes.size() >= 1 ? _shapes.at(0) : nullptr; }
/* 通过tag从body中获取shape */
PhysicsShape* getShape(int tag) const;
/**给body施加一个循序渐进的力,物体会受加速度影响,越来越快,像火车一样*/
virtual void applyForce(const Vect& force);
/** offset为偏移度 指碰到物体时 body旋转 偏移 一般设为默认值 值越大 旋转越快 偏移角度越大*/
virtual void applyForce(const Vect& force, const Point& offset);
/** 重置施加在body上的力 清0了. */
virtual void resetForces();
/** 不会产生力,直接与body的速度叠加 产生新的速度. */
virtual void applyImpulse(const Vect& impulse);
/** Applies a continuous force to body. */
virtual void applyImpulse(const Vect& impulse, const Point& offset);
/**施加一个扭转力到刚体上 就像向前翻转一块大石头一样. */
virtual void applyTorque(float torque);
/** 设置刚体的速度*/
virtual void setVelocity(const Vect& velocity);
/** 获取刚体的速度 */
virtual Point getVelocity();
/** 设置刚体角速度 就是单位时间内转动的弧度*/
virtual void setAngularVelocity(float velocity);
/** 通过一个局部点获取刚体的角速度*/
virtual Point getVelocityAtLocalPoint(const Point& point);
/** 通过世界点获取刚体的角速度*/
virtual Point getVelocityAtWorldPoint(const Point& point);
/** 获取刚体的角速度 */
virtual float getAngularVelocity();
/** 设置速度的极限值*/
virtual void setVelocityLimit(float limit);
/**获取速度的极限值 */
virtual float getVelocityLimit();
/** 设置角速度极限值 */
virtual float getAngularVelocityLimit();
/** 从world中移除body */
void removeFromWorld();
/** 获取world */
inline PhysicsWorld* getWorld() const { return _world; }
/**获取body的所有关节 */
inline const std::vector<PhysicsJoint*>& getJoints() const { return _joints; }
/** 取得body设置的sprite. */
inline Node* getNode() const { return _node; }
/**
* A mask that defines which categories this physics body belongs to.
* Every physics body in a scene can be assigned to up to 32 different categories, each corresponding to a bit in the bit mask. You define the mask values used in your game. In conjunction with the collisionBitMask and contactTestBitMask properties, you define which physics bodies interact with each other and when your game is notified of these interactions.
* The default value is 0xFFFFFFFF (all bits set).
*/没搞懂
void setCategoryBitmask(int bitmask);
/**
* A mask that defines which categories of bodies cause intersection notifications with this physics body.
* When two bodies share the same space, each body’s category mask is tested against the other body’s contact mask by performing a logical AND operation. If either comparison results in a non-zero value, an PhysicsContact object is created and passed to the physics world’s delegate. For best performance, only set bits in the contacts mask for interactions you are interested in.
* The default value is 0x00000000 (all bits cleared).
*/
void setContactTestBitmask(int bitmask);
/**
* A mask that defines which categories of physics bodies can collide with this physics body.
* When two physics bodies contact each other, a collision may occur. This body’s collision mask is compared to the other body’s category mask by performing a logical AND operation. If the result is a non-zero value, then this body is affected by the collision. Each body independently chooses whether it wants to be affected by the other body. For example, you might use this to avoid collision calculations that would make negligible changes to a body’s velocity.
* The default value is 0xFFFFFFFF (all bits set).
*/
void setCollisionBitmask(int bitmask);
/** get the category bit mask */
inline int getCategoryBitmask() const { return _categoryBitmask; }
/** get the contact test bit mask */
inline int getContactTestBitmask() const { return _contactTestBitmask; }
/** get the collision bit mask */
inline int getCollisionBitmask() const { return _collisionBitmask; }
/**
* set the group of body
* Collision groups let you specify an integral group index. You can have all fixtures with the same group index always collide (positive index) or never collide (negative index)
* it have high priority than bit masks
*/
void setGroup(int group);
/** get the group of body */
inline int getGroup() const { return _group; }
/** 获取body坐标 */
Point getPosition() const;
/** 获取body角度. */
float getRotation() const;
/**判断body是否静止*/
inline bool isDynamic() const { return _dynamic; }
/**设置body状态 false为静态 true为动态*/
void setDynamic(bool dynamic);
/**设置mass值 如果需要增加mass 有addmass方法 不要在这里做加减 */
void setMass(float mass);
/** 取得mass. */
inline float getMass() const { return _mass; }
/**
* @brief add mass to body.
* if _mass(mass of the body) == PHYSICS_INFINITY, it remains.
* if mass == PHYSICS_INFINITY, _mass will be PHYSICS_INFINITY.
* if mass == -PHYSICS_INFINITY, _mass will not change.
* if mass + _mass <= 0, _mass will equal to MASS_DEFAULT(1.0)
* other wise, mass = mass + _mass;
*/
void addMass(float mass);
/**
* @brief set the body moment of inertia.
* @note if you need add/subtract moment to body, don't use setMoment(getMoment() +/- moment), because the moment of body may be equal to PHYSICS_INFINITY, it will cause some unexpected result, please use addMoment() instead.
*/
void setMoment(float moment);
/** get the body moment of inertia. */
inline float getMoment(float moment) const { return _moment; }
/**
* @brief add moment of inertia to body.
* if _moment(moment of the body) == PHYSICS_INFINITY, it remains.
* if moment == PHYSICS_INFINITY, _moment will be PHYSICS_INFINITY.
* if moment == -PHYSICS_INFINITY, _moment will not change.
* if moment + _moment <= 0, _moment will equal to MASS_DEFAULT(1.0)
* other wise, moment = moment + _moment;
*/
void addMoment(float moment);
/** 取得线性阻尼 */
inline float getLinearDamping() const { return _linearDamping; }
/**
* 设置阻尼值
*它用来模拟body在气体或者液体中的摩擦力
*取值范围是 0.0f to 1.0f.
*/
inline void setLinearDamping(float damping) { _linearDamping = damping; }
/** 获取角阻尼 */
inline float getAngularDamping() const { return _angularDamping; }
/**
* 设置角阻尼
* 它用来模拟body在气体或者液体中的角阻尼
* the value is 0.0f to 1.0f.
*/
inline void setAngularDamping(float damping) { _angularDamping = damping; }
/** 判断body是否是 休息状态 */
bool isResting() const;
/**
*判断body能否在物理世界中模拟
*/
inline bool isEnabled() const { return _enable; }
/**
设置body能否在物理世界中模拟
*/
void setEnable(bool enable);
/** whether the body can rotation */
inline bool isRotationEnabled() const { return _rotationEnable; }
/**设置能否旋转*/
void setRotationEnable(bool enable);
/** 判断body是否受引力影响 */
inline bool isGravityEnabled() const { return _gravityEnable; }
/** 设置body是否受引力影响 */
void setGravityEnable(bool enable);
/** 取得body 的tag值 */
inline int getTag() const { return _tag; }
/** 设置body tag值*/
inline void setTag(int tag) { _tag = tag; }
/** 转换 世界点 到 局部点 类似 世界坐标和 局部坐标的转换*/
Point world2Local(const Point& point);
/** 转换局部坐标到 世界坐标 */
Point local2World(const Point& point);
2.PhysicsShape
/** 通过shape 取得body */
inline PhysicsBody* getBody() const { return _body; }
/** 返回shape的类型 */
inline Type getType() const { return _type; }
/** return the area of this shape */
inline float getArea() const { return _area; }
/** get moment */
inline float getMoment() const { return _moment; }
/** Set moment, it will change the body's moment this shape attaches */
void setMoment(float moment);
inline void setTag(int tag) { _tag = tag; }
inline int getTag() const { return _tag; }
/**获取质量 */
inline float getMass() const { return _mass; }
/** Set mass, it will change the body's mass this shape attaches */
void setMass(float mass);
inline float getDensity() const { return _material.density; }//density为密度
void setDensity(float density);//获取密度
inline float getRestitution() const { return _material.restitution; }//获取弹性
void setRestitution(float restitution);//设置弹性
inline float getFriction() const { return _material.friction; }//friction为摩擦力
void setFriction(float friction);//设置摩擦力
const PhysicsMaterial& getMaterial() const { return _material; }//Material为材质
void setMaterial(const PhysicsMaterial& material);设置材质
/** Calculate the default moment value */
virtual float calculateDefaultMoment() { return 0.0f; }
/** Get offset */
virtual Point getOffset() { return Point::ZERO; }
/** Get center of this shape */
virtual Point getCenter() { return getOffset(); }
/** Test point is in shape or not */
bool containsPoint(const Point& point) const;
/** move the points to the center */
static void recenterPoints(Point* points, int count, const Point& center = Point::ZERO);
/** get center of the polyon points */
static Point getPolyonCenter(const Point* points, int count);
/**
* A mask that defines which categories this physics body belongs to.
* Every physics body in a scene can be assigned to up to 32 different categories, each corresponding to a bit in the bit mask. You define the mask values used in your game. In conjunction with the collisionBitMask and contactTestBitMask properties, you define which physics bodies interact with each other and when your game is notified of these interactions.
* The default value is 0xFFFFFFFF (all bits set).
*/
inline void setCategoryBitmask(int bitmask) { _categoryBitmask = bitmask; }
inline int getCategoryBitmask() const { return _categoryBitmask; }
/**
* A mask that defines which categories of bodies cause intersection notifications with this physics body.
* When two bodies share the same space, each body’s category mask is tested against the other body’s contact mask by performing a logical AND operation. If either comparison results in a non-zero value, an PhysicsContact object is created and passed to the physics world’s delegate. For best performance, only set bits in the contacts mask for interactions you are interested in.
* The default value is 0x00000000 (all bits cleared).
*/
inline void setContactTestBitmask(int bitmask) { _contactTestBitmask = bitmask; }
inline int getContactTestBitmask() const { return _contactTestBitmask; }
/**
* A mask that defines which categories of physics bodies can collide with this physics body.
* When two physics bodies contact each other, a collision may occur. This body’s collision mask is compared to the other body’s category mask by performing a logical AND operation. If the result is a non-zero value, then this body is affected by the collision. Each body independently chooses whether it wants to be affected by the other body. For example, you might use this to avoid collision calculations that would make negligible changes to a body’s velocity.
* The default value is 0xFFFFFFFF (all bits set).
*/
inline void setCollisionBitmask(int bitmask) { _collisionBitmask = bitmask; }
inline int getCollisionBitmask() const { return _collisionBitmask; }
void setGroup(int group);
inline int getGroup() { return _group; }
我在编写游戏的时候遇到了这个问题, 物理引擎其他的内容还好理解, 就这三个函数就是没找到有人详细的解释一下。 我不知道这个都没弄明白,游戏是怎么做出来的。那我就不吐糟了, 下面的所有内容都是我的个人推断。不知道正不正确。 反正我目前是这么理解的。
我们先来看看这三个函数的定义:
/**
* A mask that defines which categories this physics body belongs to.
* Every physics body in a scene can be assigned to up to 32 different categories, each corresponding to a bit in the bit mask. You define the mask values used in your game. In conjunction with the collisionBitMask and contactTestBitMask properties, you define which physics bodies interact with each other and when your game is notified of these interactions.
* The default value is 0xFFFFFFFF (all bits set).
*/
/**定义了这个物理刚体是属于哪个类别的掩码。在一个场景中的每个物理刚体可以分配给达到 32 不同的类别(参数int bitmask是int类型4个字节32位),每个对应有32位中的1位掩码。您的游戏中您定义使用的掩码值。联同的 collisionBitMask 和 contactTestBitMask 的属性,定义哪些物理刚体彼此之间进行交互和何时你接收到这些交互作用的通知。默认值为的 0xFFFFFFFF (所有的位都被设置)。
*/
inline void setCategoryBitmask(int bitmask) { _categoryBitmask = bitmask; }
inline int getCategoryBitmask() const { return _categoryBitmask; }
/**
* A mask that defines which categories of bodies cause intersection notifications with this physics body.
* When two bodies share the same space, each body’s category mask is tested against the other body’s contact mask by performing a logical AND operation. If either comparison results in a non-zero value, an PhysicsContact object is created and passed to the physics world’s delegate. For best performance, only set bits in the contacts mask for interactions you are interested in.
* The default value is 0x00000000 (all bits cleared).
*/
/**
一个掩码,它定义了哪些类别的刚体与此物理刚体产生交集(相互作用)的通知。当两个刚体共有同一个空间时,通过执行逻辑与运算每个刚体的类别掩码被检测测试反对其他的刚体的接触掩码。如果任一比较结果在一个非零值,一个 PhysicsContact 对象被创建并传递到物理世界的委托。为获得最佳性能,仅设置您感兴趣的互动相互作用的接触掩码位。默认值为 0x00000000 (所有位均被清除)。
*/
inline void setContactTestBitmask(int bitmask) { _contactTestBitmask = bitmask; }
inline int getContactTestBitmask() const { return _contactTestBitmask; }
/**
* A mask that defines which categories of physics bodies can collide with this physics body.
* When two physics bodies contact each other, a collision may occur. This body’s collision mask is compared to the other body’s category mask by performing a logical AND operation. If the result is a non-zero value, then this body is affected by the collision. Each body independently chooses whether it wants to be affected by the other body. For example, you might use this to avoid collision calculations that would make negligible changes to a body’s velocity.
* The default value is 0xFFFFFFFF (all bits set).
*/
/**
一个掩码,它定义了哪些类别的物理刚体可以与这物理刚体发生碰撞。当两个物理刚体互相接触时,可能会发生冲突。这个刚体的碰撞掩码被相比其他刚体的类别掩码通过执行按位逻辑与运算。如果结果是一个非零值,则这一刚体被受碰撞。每个刚体独立地选择是否愿意受其他刚体的影响。例如,您可能会使用这来避免碰撞计算使对刚体的速度的变化可以忽略。默认值为的 0xFFFFFFFF (所有的位设置)。
*/
inline void setCollisionBitmask(int bitmask) { _collisionBitmask = bitmask; }
inline int getCollisionBitmask() const { return _collisionBitmask; }
每个函数说了这么多,那么具体是什么意思呢? 看看下面的例子:
box1->getPhysicsBody()->setCategoryBitmask(0x01); // 0001
box1->getPhysicsBody()->setContactTestBitmask(0x04); // 0100
box1->getPhysicsBody()->setCollisionBitmask(0x03); // 0011
box2->getPhysicsBody()->setCategoryBitmask(0x02); // 0010
box2->getPhysicsBody()->setContactTestBitmask(0x08); // 1000
box2->getPhysicsBody()->setCollisionBitmask(0x01); // 0001
box3->getPhysicsBody()->setCategoryBitmask(0x04); // 0100
box3->getPhysicsBody()->setContactTestBitmask(0x01); // 0001
box3->getPhysicsBody()->setCollisionBitmask(0x06); // 0110
box1 和 box2 发生碰撞
box1 box3 不会
box2 box3 也不会
为什么呢? 解释如下:
box1的类别掩码 00000000 00000000 00000000 00000001
可接到通知 00000000 00000000 00000000 00000100
允许撞我 00000000 00000000 00000000 00000011
box2的类别掩码 00000000 00000000 00000000 00000010
可接到通知 00000000 00000000 00000000 00001000
允许撞我 00000000 00000000 00000000 00000001
box3的类别掩码 00000000 00000000 00000000 00000100
可接到通知 00000000 00000000 00000000 00000001
允许撞我 00000000 00000000 00000000 00000110
现在做运算呗:
box1的允许撞我 00000000 00000000 00000000 00000011 与box2的类别掩码做按位与运算
box2的类别掩码 00000000 00000000 00000000 00000010
结果为: 00000000 00000000 00000000 00000010 不为0, box1会撞到box2撞到。
同理:
box2的允许撞我 00000000 00000000 00000000 00000001 与box1的类别掩码做按位与运算
box1的类别掩码 00000000 00000000 00000000 00000001
结果为: 00000000 00000000 00000000 00000001 不为0, box2会撞到box1撞到。
他们会相互受到撞击的。
box2的允许撞我与box3的类别掩码 按位与运算为0;
box3的允许撞我与box2的类别掩码 按位与运算为0;
box1的允许撞我与box3的类别掩码 按位与运算为0;
box3的允许撞我与box1的类别掩码 按位与运算为0;
所以:
box1 and box2 发生碰撞
but the box1 box3 不会
the box2 box3 也不会