- 深入MapReduce——引入
黄雪超
大数据基础#深入MapReducemapreduce大数据hadoop
引入前面我们已经深入了HDFS的设计与实现,对于分布式系统也有了不错的理解。但HDFS仅仅解决了海量数据存储和读写的问题。但要想让数据产生价值,一定是需要从数据中挖掘出价值才行,这就需要我们拥有海量数据的计算处理能力。下面我们还是老样子,来数据一下要实现海量计算处理能力,有些什么核心痛点大数据计算核心痛点量级大在稍微大一点的互联网企业,需要计算处理的数据量都开始以PB计了。而传统的计算处理模型中,
- 大数据学习(36)- Hive和YARN
viperrrrrrr
大数据学习hive
&&大数据学习&&系列专栏:哲学语录:承认自己的无知,乃是开启智慧的大门如果觉得博主的文章还不错的话,请点赞+收藏⭐️+留言支持一下博主哦当客户端提交SQL作业到HiveServer2时,HiveServer2会根据用户提交的SQL作业及数据库中现有的元数据信息生成一份可供计算引擎执行的计划。每个执行计划对应若干MapReduce作业,Hive会将所有的MapReduce作业都提交到YARN中。Y
- hadoop常用命令
我要用代码向我喜欢的女孩表白
hadoopnpm大数据
Yarn查看提交到资源调度器的任务(任何用yarn资源的都可以看,比如spark、tez、mapreduce)看正在运行的yarn任务yarnapplication-list杀死对应的yarn任务yarnapplication-kill{application_Id}(id可以通过-list看到)hdfs查看hdfs目录hdfsdfs-ls/(查看本集群的目录)hdfsdfs-lshdfs://i
- 大数据-257 离线数仓 - 数据质量监控 监控方法 Griffin架构
武子康
大数据离线数仓大数据数据仓库java后端hadoophive
点一下关注吧!!!非常感谢!!持续更新!!!Java篇开始了!目前开始更新MyBatis,一起深入浅出!目前已经更新到了:Hadoop(已更完)HDFS(已更完)MapReduce(已更完)Hive(已更完)Flume(已更完)Sqoop(已更完)Zookeeper(已更完)HBase(已更完)Redis(已更完)Kafka(已更完)Spark(已更完)Flink(已更完)ClickHouse(已
- 浅谈MapReduce
Android路上的人
Hadoop分布式计算mapreduce分布式框架hadoop
从今天开始,本人将会开始对另一项技术的学习,就是当下炙手可热的Hadoop分布式就算技术。目前国内外的诸多公司因为业务发展的需要,都纷纷用了此平台。国内的比如BAT啦,国外的在这方面走的更加的前面,就不一一列举了。但是Hadoop作为Apache的一个开源项目,在下面有非常多的子项目,比如HDFS,HBase,Hive,Pig,等等,要先彻底学习整个Hadoop,仅仅凭借一个的力量,是远远不够的。
- 自定义分区
我的K8409
Hadoophdfshadoop大数据
通过简单例子了解partition分区类的重写方法分区是在MR的过程中进行的,属于Shuffle阶段但是在Job端不要忘记进行调用:job.setPartitionerClass(xxx.class)按照年龄分区:classAgePartitionerextendsPartitioner{@OverridepublicintgetPartition(MyComparablekey,NullWrit
- Hadoop
傲雪凌霜,松柏长青
后端大数据hadoop大数据分布式
ApacheHadoop是一个开源的分布式计算框架,主要用于处理海量数据集。它具有高度的可扩展性、容错性和高效的分布式存储与计算能力。Hadoop核心由四个主要模块组成,分别是HDFS(分布式文件系统)、MapReduce(分布式计算框架)、YARN(资源管理)和HadoopCommon(公共工具和库)。1.HDFS(HadoopDistributedFileSystem)HDFS是Hadoop生
- hbase介绍
CrazyL-
云计算+大数据hbase
hbase是一个分布式的、多版本的、面向列的开源数据库hbase利用hadoophdfs作为其文件存储系统,提供高可靠性、高性能、列存储、可伸缩、实时读写、适用于非结构化数据存储的数据库系统hbase利用hadoopmapreduce来处理hbase、中的海量数据hbase利用zookeeper作为分布式系统服务特点:数据量大:一个表可以有上亿行,上百万列(列多时,插入变慢)面向列:面向列(族)的
- Spark集群的三种模式
MelodyYN
#Sparksparkhadoopbigdata
文章目录1、Spark的由来1.1Hadoop的发展1.2MapReduce与Spark对比2、Spark内置模块3、Spark运行模式3.1Standalone模式部署配置历史服务器配置高可用运行模式3.2Yarn模式安装部署配置历史服务器运行模式4、WordCount案例1、Spark的由来定义:Hadoop主要解决,海量数据的存储和海量数据的分析计算。Spark是一种基于内存的快速、通用、可
- HBase介绍
mingyu1016
数据库
概述HBase是一个分布式的、面向列的开源数据库,源于google的一篇论文《bigtable:一个结构化数据的分布式存储系统》。HBase是GoogleBigtable的开源实现,它利用HadoopHDFS作为其文件存储系统,利用HadoopMapReduce来处理HBase中的海量数据,利用Zookeeper作为协同服务。HBase的表结构HBase以表的形式存储数据。表有行和列组成。列划分为
- Hadoop windows intelij 跑 MR WordCount
piziyang12138
一、软件环境我使用的软件版本如下:IntellijIdea2017.1Maven3.3.9Hadoop分布式环境二、创建maven工程打开Idea,file->new->Project,左侧面板选择maven工程。(如果只跑MapReduce创建java工程即可,不用勾选Creatfromarchetype,如果想创建web工程或者使用骨架可以勾选)image.png设置GroupId和Artif
- ArcGIS地图切片原理与算法
数智侠
GIS
ArcGIS地图切图系列之(一)切片原理解析点击打开链接ArcGIS地图切图系列之(二)JAVA实现点击打开链接ArcGIS地图切图系列之(三)MapReduce实现点击打开链接
- 数据中台建设方案-基于大数据平台(下)
FRDATA1550333
大数据数据库架构数据库开发数据库
数据中台建设方案-基于大数据平台(下)1数据中台建设方案1.1总体建设方案1.2大数据集成平台1.3大数据计算平台1.3.1数据计算层建设计算层技术含量最高,最为活跃,发展也最为迅速。计算层主要实现各类数据的加工、处理和计算,为上层应用提供良好和充分的数据支持。大数据基础平台技术能力的高低,主要依赖于该层组件的发展。本建设方案满足甲方对于数据计算层建设的基本要求:利用了MapReduce、Spar
- MIT6.824 课程-MapReduce
余为民同志
6.824mapreduce分布式6.824
MapReduce:在大型集群上简化数据处理概要MapReduce是一种编程模型,它是一种用于处理和生成大型数据集的实现。用户通过指定一个用来处理键值对(Key/Value)的map函数来生成一个中间键值对集合。然后,再指定一个reduce函数,它用来合并所有的具有相同中间key的中间value。现实生活中有许多任务可以通过该模型进行表达,具体案例会在论文中展现出来。以这种函数式风格编写的程序能够
- Hadoop之mapreduce -- WrodCount案例以及各种概念
lzhlizihang
hadoopmapreduce大数据
文章目录一、MapReduce的优缺点二、MapReduce案例--WordCount1、导包2、Mapper方法3、Partitioner方法(自定义分区器)4、reducer方法5、driver(main方法)6、Writable(手机流量统计案例的实体类)三、关于片和块1、什么是片,什么是块?2、mapreduce启动多少个MapTask任务?四、MapReduce的原理五、Shuffle过
- Yarn介绍 - 大数据框架
why do not
大数据hadoop
YARN的概述YARN是一个资源调度平台,负责为运算程序提供服务器运算资源,相当于一个分布式的操作系统平台,而MapReduce等运算程序则相当于运行于操作系统之上的应用程序YARN是Hadoop2.x版本中的一个新特性。它的出现其实是为了解决第一代MapReduce编程框架的不足,提高集群环境下的资源利用率,这些资源包括内存,磁盘,网络,IO等。Hadoop2.X版本中重新设计的这个YARN集群
- 浅析大数据Hadoop之YARN架构
haotian1685
python数据清洗人工智能大数据大数据学习深度学习大数据大数据学习YARNhadoop
1.YARN本质上是资源管理系统。YARN提供了资源管理和资源调度等机制1.1原HadoopMapReduce框架对于业界的大数据存储及分布式处理系统来说,Hadoop是耳熟能详的卓越开源分布式文件存储及处理框架,对于Hadoop框架的介绍在此不再累述,读者可参考Hadoop官方简介。使用和学习过老Hadoop框架(0.20.0及之前版本)的同仁应该很熟悉如下的原MapReduce框架图:1.2H
- Hive的优势与使用场景
傲雪凌霜,松柏长青
后端大数据hivehadoop数据仓库
Hive的优势Hive作为一个构建在Hadoop上的数据仓库工具,具有许多优势,特别是在处理大规模数据分析任务时。以下是Hive的主要优势:1.与Hadoop生态系统的紧密集成Hive构建在Hadoop分布式文件系统(HDFS)之上,能够处理海量数据并进行分布式计算。它利用Hadoop的MapReduce或Spark来执行查询,具备高度扩展性,适合大数据处理。2.支持SQL-like查询语言(Hi
- TypeError: list indices must be integers or slices, not list
m0_68138877
pytorchlist
TypeError:listindicesmustbeintegersorslices,notlist原因:传入参数搞错了计划通过一个下标list,通过rand.shuffle实现训练数据的随机化,结果因为传入的数据是没有tokenized的(就是一堆原始的字符串,并且是用list保存的,tokenize之后应该是一个torch.tensor类型的张量)修复方法:对应原因,传入正确的参数即可总结:
- Spark概念知识笔记
kuntoria
最近总结了个人的各项能力,发现在大数据这方面几乎没有涉及,因此想补充这方面的知识,丰富自己的知识体系,大数据生态主要包含:Hadoop和Spark两个部分,Spark作用相当于MapReduceMapReduce和Spark对比如下磁盘由于其物理特性现在,速度提升非常困难,远远跟不上CPU和内存的发展速度。近几十年来,内存的发展一直遵循摩尔定律,价格在下降,内存在增加。现在主流的服务器,几百GB或
- 【Hadoop】- MapReduce & YARN 初体验[9]
星星法术嗲人
hadoophadoopmapreduce
目录提交MapReduce程序至YARN运行1、提交wordcount示例程序1.1、先准备words.txt文件上传到hdfs,文件内容如下:1.2、在hdfs中创建两个文件夹,分别为/input、/output1.3、将创建好的words.txt文件上传到hdfs中/input1.4、提交MapReduce程序至YARN1.5、可通过node1:8088查看1.6、返回我们的服务器,检查输出文
- DAG (directed acyclic graph) 作为大数据执行引擎的优点
joeywen
分布式计算StormSparkStorm杂谈StormsparkDAG
TL;DR-ConceptuallyDAGmodelisastrictgeneralizationofMapReducemodel.DAG-basedsystemslikeSparkandTezthatareawareofthewholeDAGofoperationscandobetterglobaloptimizationsthansystemslikeHadoopMapReducewhicha
- Hadoop组件
静听山水
Hadoophadoop
这张图片展示了Hadoop生态系统的一些主要组件。Hadoop是一个开源的大数据处理框架,由Apache基金会维护。以下是每个组件的简短介绍:HBase:一个分布式、面向列的NoSQL数据库,基于GoogleBigTable的设计理念构建。HBase提供了实时读写访问大量结构化和半结构化数据的能力,非常适合大规模数据存储。Pig:一种高级数据流语言和执行引擎,用于编写MapReduce任务。Pig
- Hadoop-MapReduce机制原理
H.S.T不想卷
大数据hadoopmapreduce大数据
MapReduce机制原理1、MapReduce概述2、MapReduce特点3、MapReduce局限性4、MapTask5、Map阶段步骤:6、Reduce阶段步骤:7、MapReduce阶段图1、MapReduce概述 HadoopMapReduce是一个分布式计算框架,用于轻松编写分布式应用程序,这些应用程序以可靠,容错的方式并行处理大型硬件集群(数千个节点)上的大量数据(多TB数据集)
- EMR组件部署指南
ivwdcwso
运维EMR大数据开源运维
EMR(ElasticMapReduce)是一个大数据处理和分析平台,包含了多个开源组件。本文将详细介绍如何部署EMR的主要组件,包括:JDK1.8ElasticsearchKafkaFlinkZookeeperHBaseHadoopPhoenixScalaSparkHive准备工作所有操作都在/data目录下进行。首先安装JDK1.8:yuminstalljava-1.8.0-openjdk部署
- hive学习记录
2302_80695227
hive学习hadoop
一、Hive的基本概念定义:Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张表,并提供类SQL查询功能。Hive将HQL(HiveQueryLanguage)转化成MapReduce程序或其他分布式计算引擎(如Tez、Spark)的任务进行计算。数据存储:Hive处理的数据存储在HDFS(HadoopDistributedFileSystem)上。执行引擎:Hive的
- Mapreduce是什么
whisky丶
简单来说,MapReduce是一个编程模型,用以进行大数据量的计算。HadoopMapReduce是一个软件框架,基于该框架能够容易地编写应用程序,这些应用程序能够运行在由上千个商用机器组成的大集群上,并以一种可靠的,具有容错能力的方式并行地处理上TB级别的海量数据集。Mapreduce的特点:软件框架并行处理可靠且容错大规模集群海量数据集
- Hadoop之MapReduce
qq_43198449
1.MapReduce解决的问题1)数据问题:10G的TXT文件2)生活问题:统计分类上海市的图书馆的书2.MapReduce是什么MapReduce是一种分布式的离线计算框架,是一种编程模型,用于大规模数据集(大于1TB)的并行运算将自己的程序运行在分布式系统上。概念是:Map(映射)"和"Reduce(归约)指定一个Map(映射)函数,用来把一组键值对映射成一组新的键值对,指定并发的Reduc
- 生产环境中MapReduce的最佳实践
大数据深度洞察
Hadoopmapreduce大数据
目录MapReduce跑的慢的原因MapReduce常用调优参数1.MapTask相关参数2.ReduceTask相关参数3.总体调优参数4.其他重要参数调优策略MapReduce数据倾斜问题1.数据预处理2.自定义Partitioner3.调整Reduce任务数4.小文件问题处理5.二次排序6.使用桶表7.使用随机前缀8.参数调优实施步骤MapReduce跑的慢的原因MapReduce程序效率的
- Hive 运行在 Tez 上
爱吃酸梨
大数据
Tez介绍Tez是一种基于内存的计算框架,速度比MapReduce要快解释:浅蓝色方块表示Map任务,绿色方块表示Reduce任务,蓝色边框的云朵表示中间结果落地磁盘。Tez下载Tez官网Tez在Hive上的运用前提要有Hadoop集群上传Tez压缩包到Hive节点上tar-zxvfapache-tez-0.9.1-bin.tar.gz-C/opt/module/tez-0.9.1修改$HIVE_
- 辗转相处求最大公约数
沐刃青蛟
C++漏洞
无言面对”江东父老“了,接触编程一年了,今天发现还不会辗转相除法求最大公约数。惭愧惭愧!
为此,总结一下以方便日后忘了好查找。
1.输入要比较的两个数a,b
忽略:2.比较大小(因为后面要的是大的数对小的数做%操作)
3.辗转相除(用循环不停的取余,如a%b,直至b=0)
4.最后的a为两数的最大公约数
&
- F5负载均衡会话保持技术及原理技术白皮书
bijian1013
F5负载均衡
一.什么是会话保持? 在大多数电子商务的应用系统或者需要进行用户身份认证的在线系统中,一个客户与服务器经常经过好几次的交互过程才能完成一笔交易或者是一个请求的完成。由于这几次交互过程是密切相关的,服务器在进行这些交互过程的某一个交互步骤时,往往需要了解上一次交互过程的处理结果,或者上几步的交互过程结果,服务器进行下
- Object.equals方法:重载还是覆盖
Cwind
javagenericsoverrideoverload
本文译自StackOverflow上对此问题的讨论。
原问题链接
在阅读Joshua Bloch的《Effective Java(第二版)》第8条“覆盖equals时请遵守通用约定”时对如下论述有疑问:
“不要将equals声明中的Object对象替换为其他的类型。程序员编写出下面这样的equals方法并不鲜见,这会使程序员花上数个小时都搞不清它为什么不能正常工作:”
pu
- 初始线程
15700786134
暑假学习的第一课是讲线程,任务是是界面上的一条线运动起来。
既然是在界面上,那必定得先有一个界面,所以第一步就是,自己的类继承JAVA中的JFrame,在新建的类中写一个界面,代码如下:
public class ShapeFr
- Linux的tcpdump
被触发
tcpdump
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支 持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。
实用命令实例
默认启动
tcpdump
普通情况下,直
- 安卓程序listview优化后还是卡顿
肆无忌惮_
ListView
最近用eclipse开发一个安卓app,listview使用baseadapter,里面有一个ImageView和两个TextView。使用了Holder内部类进行优化了还是很卡顿。后来发现是图片资源的问题。把一张分辨率高的图片放在了drawable-mdpi文件夹下,当我在每个item中显示,他都要进行缩放,导致很卡顿。解决办法是把这个高分辨率图片放到drawable-xxhdpi下。
&nb
- 扩展easyUI tab控件,添加加载遮罩效果
知了ing
jquery
(function () {
$.extend($.fn.tabs.methods, {
//显示遮罩
loading: function (jq, msg) {
return jq.each(function () {
var panel = $(this).tabs(&
- gradle上传jar到nexus
矮蛋蛋
gradle
原文地址:
https://docs.gradle.org/current/userguide/maven_plugin.html
configurations {
deployerJars
}
dependencies {
deployerJars "org.apache.maven.wagon
- 千万条数据外网导入数据库的解决方案。
alleni123
sqlmysql
从某网上爬了数千万的数据,存在文本中。
然后要导入mysql数据库。
悲剧的是数据库和我存数据的服务器不在一个内网里面。。
ping了一下, 19ms的延迟。
于是下面的代码是没用的。
ps = con.prepareStatement(sql);
ps.setString(1, info.getYear())............;
ps.exec
- JAVA IO InputStreamReader和OutputStreamReader
百合不是茶
JAVA.io操作 字符流
这是第三篇关于java.io的文章了,从开始对io的不了解-->熟悉--->模糊,是这几天来对文件操作中最大的感受,本来自己认为的熟悉了的,刚刚在回想起前面学的好像又不是很清晰了,模糊对我现在或许是最好的鼓励 我会更加的去学 加油!:
JAVA的API提供了另外一种数据保存途径,使用字符流来保存的,字符流只能保存字符形式的流
字节流和字符的难点:a,怎么将读到的数据
- MO、MT解读
bijian1013
GSM
MO= Mobile originate,上行,即用户上发给SP的信息。MT= Mobile Terminate,下行,即SP端下发给用户的信息;
上行:mo提交短信到短信中心下行:mt短信中心向特定的用户转发短信,你的短信是这样的,你所提交的短信,投递的地址是短信中心。短信中心收到你的短信后,存储转发,转发的时候就会根据你填写的接收方号码寻找路由,下发。在彩信领域是一样的道理。下行业务:由SP
- 五个JavaScript基础问题
bijian1013
JavaScriptcallapplythisHoisting
下面是五个关于前端相关的基础问题,但却很能体现JavaScript的基本功底。
问题1:Scope作用范围
考虑下面的代码:
(function() {
var a = b = 5;
})();
console.log(b);
什么会被打印在控制台上?
回答:
上面的代码会打印 5。
&nbs
- 【Thrift二】Thrift Hello World
bit1129
Hello world
本篇,不考虑细节问题和为什么,先照葫芦画瓢写一个Thrift版本的Hello World,了解Thrift RPC服务开发的基本流程
1. 在Intellij中创建一个Maven模块,加入对Thrift的依赖,同时还要加上slf4j依赖,如果不加slf4j依赖,在后面启动Thrift Server时会报错
<dependency>
- 【Avro一】Avro入门
bit1129
入门
本文的目的主要是总结下基于Avro Schema代码生成,然后进行序列化和反序列化开发的基本流程。需要指出的是,Avro并不要求一定得根据Schema文件生成代码,这对于动态类型语言很有用。
1. 添加Maven依赖
<?xml version="1.0" encoding="UTF-8"?>
<proj
- 安装nginx+ngx_lua支持WAF防护功能
ronin47
需要的软件:LuaJIT-2.0.0.tar.gz nginx-1.4.4.tar.gz &nb
- java-5.查找最小的K个元素-使用最大堆
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
public class MinKElement {
/**
* 5.最小的K个元素
* I would like to use MaxHeap.
* using QuickSort is also OK
*/
public static void
- TCP的TIME-WAIT
bylijinnan
socket
原文连接:
http://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux.html
以下为对原文的阅读笔记
说明:
主动关闭的一方称为local end,被动关闭的一方称为remote end
本地IP、本地端口、远端IP、远端端口这一“四元组”称为quadruplet,也称为socket
1、TIME_WA
- jquery ajax 序列化表单
coder_xpf
Jquery ajax 序列化
checkbox 如果不设定值,默认选中值为on;设定值之后,选中则为设定的值
<input type="checkbox" name="favor" id="favor" checked="checked"/>
$("#favor&quo
- Apache集群乱码和最高并发控制
cuisuqiang
apachetomcat并发集群乱码
都知道如果使用Http访问,那么在Connector中增加URIEncoding即可,其实使用AJP时也一样,增加useBodyEncodingForURI和URIEncoding即可。
最大连接数也是一样的,增加maxThreads属性即可,如下,配置如下:
<Connector maxThreads="300" port="8019" prot
- websocket
dalan_123
websocket
一、低延迟的客户端-服务器 和 服务器-客户端的连接
很多时候所谓的http的请求、响应的模式,都是客户端加载一个网页,直到用户在进行下一次点击的时候,什么都不会发生。并且所有的http的通信都是客户端控制的,这时候就需要用户的互动或定期轮训的,以便从服务器端加载新的数据。
通常采用的技术比如推送和comet(使用http长连接、无需安装浏览器安装插件的两种方式:基于ajax的长
- 菜鸟分析网络执法官
dcj3sjt126com
网络
最近在论坛上看到很多贴子在讨论网络执法官的问题。菜鸟我正好知道这回事情.人道"人之患好为人师" 手里忍不住,就写点东西吧. 我也很忙.又没有MM,又没有MONEY....晕倒有点跑题.
OK,闲话少说,切如正题. 要了解网络执法官的原理. 就要先了解局域网的通信的原理.
前面我们看到了.在以太网上传输的都是具有以太网头的数据包. 
- Android相对布局属性全集
dcj3sjt126com
android
RelativeLayout布局android:layout_marginTop="25dip" //顶部距离android:gravity="left" //空间布局位置android:layout_marginLeft="15dip //距离左边距
// 相对于给定ID控件android:layout_above 将该控件的底部置于给定ID的
- Tomcat内存设置详解
eksliang
jvmtomcattomcat内存设置
Java内存溢出详解
一、常见的Java内存溢出有以下三种:
1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出JVM在启动的时候会自动设置JVM Heap的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)不可超过物理内存。
可以利用JVM提
- Java6 JVM参数选项
greatwqs
javaHotSpotjvmjvm参数JVM Options
Java 6 JVM参数选项大全(中文版)
作者:Ken Wu
Email:
[email protected]
转载本文档请注明原文链接 http://kenwublog.com/docs/java6-jvm-options-chinese-edition.htm!
本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Opt
- weblogic创建JMC
i5land
weblogicjms
进入 weblogic控制太
1.创建持久化存储
--Services--Persistant Stores--new--Create FileStores--name随便起--target默认--Directory写入在本机建立的文件夹的路径--ok
2.创建JMS服务器
--Services--Messaging--JMS Servers--new--name随便起--Pers
- 基于 DHT 网络的磁力链接和BT种子的搜索引擎架构
justjavac
DHT
上周开发了一个磁力链接和 BT 种子的搜索引擎 {Magnet & Torrent},本文简单介绍一下主要的系统功能和用到的技术。
系统包括几个独立的部分:
使用 Python 的 Scrapy 框架开发的网络爬虫,用来爬取磁力链接和种子;
使用 PHP CI 框架开发的简易网站;
搜索引擎目前直接使用的 MySQL,将来可以考虑使
- sql添加、删除表中的列
macroli
sql
添加没有默认值:alter table Test add BazaarType char(1)
有默认值的添加列:alter table Test add BazaarType char(1) default(0)
删除没有默认值的列:alter table Test drop COLUMN BazaarType
删除有默认值的列:先删除约束(默认值)alter table Test DRO
- PHP中二维数组的排序方法
abc123456789cba
排序二维数组PHP
<?php/*** @package BugFree* @version $Id: FunctionsMain.inc.php,v 1.32 2005/09/24 11:38:37 wwccss Exp $*** Sort an two-dimension array by some level
- hive优化之------控制hive任务中的map数和reduce数
superlxw1234
hivehive优化
一、 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);2. 
- Spring Boot 1.2.4 发布
wiselyman
spring boot
Spring Boot 1.2.4已于6.4日发布,repo.spring.io and Maven Central可以下载(推荐使用maven或者gradle构建下载)。
这是一个维护版本,包含了一些修复small number of fixes,建议所有的用户升级。
Spring Boot 1.3的第一个里程碑版本将在几天后发布,包含许多