- 非对称加密:SSL/TLS握手的数学基石
安全
1.密钥交换的密码学困局在未加密的HTTP通信中,攻击者可通过中间人攻击(MITM)窃听或篡改数据。SSL/TLS协议的核心挑战在于:如何在不安全的信道上建立安全通信?这本质上是一个“密钥分发问题”——若使用对称加密(如AES),双方需要共享同一密钥,但密钥本身如何安全传递?非对称加密的突破性在于公钥与私钥的分离。以RSA算法为例,其数学基础是大质数分解难题:选择两个大质数p和q(通常≥2048位
- 嵌入式AI必备技能2-模型的压缩与加速
奥德彪123
嵌入式AI人工智能嵌入式
嵌入式AI必备技能2-模型的压缩与加速引言随着嵌入式AI设备的广泛应用,模型的计算效率和存储需求成为核心挑战。由于嵌入式系统通常资源受限,传统的深度学习模型往往难以直接部署。因此,模型压缩和加速技术应运而生,旨在减少计算量、降低存储需求,同时尽可能保持模型的准确性。本文介绍几种常见的模型压缩与加速方法,包括剪枝、低秩分解、量化、权值共享、知识蒸馏等,并探讨如何综合应用这些技术来优化AI模型。1.常
- 数据仓库有哪些建模方法?
BenBen尔
#数据仓库数据仓库大数据
数据仓库的建模方法主要分为关系建模和多维建模两大类,不同方法适用于不同的业务场景和目标。以下是常见的建模方法及其特点:一、关系建模(规范化建模)基于关系型数据库的规范化理论,强调减少数据冗余,适合复杂的企业级数据仓库(EDW)。第三范式(3NF)定义:通过规范化将数据分解为多个关联表,确保每个字段仅依赖主键。优点:数据冗余低,一致性高,适合复杂事务处理。缺点:查询需要多表关联,性能较低;业务理解成
- DeepSeek面试——分词算法
mzgong
人工智能算法
DeepSeek-V3分词算法一、核心算法:字节级BPE(Byte-levelBPE,BBPE)DeepSeek-V3采用字节级BPE(BBPE)作为核心分词算法,这是对传统BPE(BytePairEncoding)算法的改进版本。其核心原理是将文本分解为字节(Byte)序列,通过统计高频相邻字节对的共现频率进行逐层合并,最终形成128K扩展词表。二、BBPE的核心优势1.多语言统一处理能力跨语言
- 形象理解线性代数的本质(三) 矩阵的升维和降维
_躬行_
线性代数机器学习基础矩阵线性代数
引子:降维打击科幻小说《三体》里一种很魔幻的攻击方法——降维打击,以其神奇的作用方式和巨大的威力刷新了我们的三观。而在矩阵乘法计算中,这种降维打击时刻存在着。本节讲解一下矩阵乘法中造成的升维和降维。一、矩阵的降维还用游戏的例子,有4个角色,每个人都有不同的能力,将其用矩阵表示出来现在我们要评估他们的两种能力:领兵打仗的能力和协同将领的能力只要将两个矩阵相乘,就能根据方法X对象的法则评估出他们这两种
- 面试基础---面试刷题推荐 动态规划算法:背包问题与最长公共子序列
WeiLai1112
leetcode刷题算法面试动态规划java分布式
动态规划算法:背包问题与最长公共子序列引言:动态规划的核心思想动态规划(DynamicProgramming,DP)是一种解决复杂问题的算法思想,通过将问题分解为子问题,并保存子问题的解,避免重复计算,从而提高效率。本文将详细讲解动态规划在背包问题和最长公共子序列中的应用,并提供易于记忆的代码模板。一、背包问题1.1问题描述给定n个物品,每个物品有一个重量w[i]和一个价值v[i]。现在有一个容量
- 问deepseek: openfoam并行分区,数据交换逻辑解释
weixin_42849849
CFD/OpenFOAM数值计算/数值优化DeepSeek
在OpenFOAM中,并行计算通过将计算域分解为多个子域来实现,每个子域由一个独立的进程处理。并行分区和数据交换是确保计算正确性和效率的关键部分。以下是并行分区和数据交换逻辑的详细解释:1.并行分区并行分区是将计算域分解为多个子域的过程,每个子域由一个独立的MPI进程处理。OpenFOAM提供了多种分区工具,如decomposePar,支持以下分区方法:简单分区:将域均匀划分为若干块。层次分区:递
- MetaGPT零基础极速入门:手把手教你打造AI虚拟公司
Julian.zhou
MetaGPT人工智能人工智能
MetaGPT是什么?为什么突然爆火?MetaGPT是由中国团队开发的多智能体协作框架,仅需1个需求,自动生成完整软件项目!它能模拟真实IT公司流程,自动分解任务、编写代码、生成文档,GitHub狂揽18k+星!官网:https://www.deepwisdom.ai/源码地址:https://github.com/geekan/MetaGPTMetaGPT能做什么?一句需求,可以让模拟的一个团队
- 2023第14届蓝桥杯大赛软件赛省赛C/C++大学A组第8题题解:异或和之和
浴乎风乎
蓝桥杯c++算法
目录问题描述:方法一:暴力枚举(50%)方法二:前缀和优化(90%)方法三:前缀和+按位分解+乘法原理问题描述:给定一个数组Ai,分别求其每个子段的异或和,并求出它们的和。或者说,对于每组满足1≤L≤R≤n的L,R,求出数组中第L至第R个元素的异或和。然后输出每组L,R得到的结果加起来的值。输入格式:输入的第一行包含一个整数n。第二行包含n个整数Ai,相邻整数之间使用一个空格分隔。输出格式:输出一
- 信号处理抽取多项滤波的数学推导与仿真
jz_ddk
信号处理python算法
昨天的《信号处理之插值、抽取与多项滤波》,已经介绍了插值抽取的多项滤率,今天详细介绍多项滤波的数学推导,并附上实战仿真代码。一、数学变换推导1.多相分解的核心思想将FIR滤波器的系数h(n)h(n)h(n)按相位分组,每组对应输入信号的不同抽样相位。通过分相、滤波、重组,实现与原FIR等效的处理。2.数学变换推导FIR滤波器的系统函数可表示为:H(z)=∑n=0N−1h(n)z−nH(z)=\su
- 了解JS递归
几度泥的菜花
javascript前端
在JavaScript中,递归是一个非常重要的概念,它允许函数在其定义内部调用自身。递归在处理许多类型的问题时非常有用,尤其是那些可以通过分解成更小、更简单的子问题来解决的问题。然而,递归也需要谨慎使用,因为它可能导致堆栈溢出(特别是当递归调用非常深时)。以下是关于JavaScript递归的一些深入了解:1.递归的基本结构递归函数通常包含两个基本部分:基本情况(BaseCase):这是递归停止的条
- CF576A Vasya and Petya‘s Game 题解
W9095
算法学习笔记c++
CF576AVasyaandPetya’sGame数论思维题。根据唯一分解定理,可以知道,如果一个数的各个质因数的数量确定了,这个数也就确定了。每次询问的中,如果xxx是yyy的倍数,证明xxx中含yyy的所有质因数。我们可以枚举质数,判定xxx能否整除这个质数,就可以判断xxx是否含有这个质因数。但是这还不能完全确定xxx,因为这样只能确定是否有某个质因数,而不能确定质因数的数量。为了确定质因数
- Prompt优化 COT/COD
陌陌623
prompt人工智能
文章目录基本的方法论框架COT/CODCOT/COD对比其他优化点1.示例引导与少样本学习2.角色设定与背景引导3.任务分解与步骤引导基本的方法论框架基础要素:指令、背景信息、补充数据(要求)、输出格式、(其他限制条件)有时背景信息较长,限制信息可能会失效,可以最后再写一个限制信息。例如:大模型用来画思维导图指令:帮我写一个模型训练的思维导图。背景信息:千帆ModelBuilder训练流程为框架。
- 使用 Math.NET 进行数值计算的指南
墨瑾轩
一起学学C#【一】.net决策树算法
关注墨瑾轩,带你探索编程的奥秘!超萌技术攻略,轻松晋级编程高手技术宝库已备好,就等你来挖掘订阅墨瑾轩,智趣学习不孤单即刻启航,编程之旅更有趣使用Math.NET进行数值计算的指南️♂️数值计算的魅力:从基础到进阶引言在科学计算、工程设计甚至是金融分析等领域,数值计算都是不可或缺的一环。Math.NETNumerics作为.NET平台上的一款强大而全面的数值计算库,提供了包括线性代数、概率统计、信
- Math.NET Numerics 库怎么装
9677
.net
你提到的缺少的库是Math.NETNumerics。关于Math.NETNumericsMath.NETNumerics是一个用于.NET平台的开源数学库,提供了以下功能:线性代数(矩阵运算、求解线性方程组等)。数值计算(积分、微分、优化等)。统计和概率分布。回归分析(包括多元线性回归)。它是C#中进行科学计算和数据分析的常用工具。安装Math.NETNumerics你可以通过NuGet包管理器安
- 【蓝桥杯备赛】Day12:贪心算法
凯强同学
蓝桥杯蓝桥杯贪心算法python
题目1:题目2518:信息学奥赛一本通T1620-质因数分解原题来自:NOIP2012普及组已知正整数n是两个不同的质数的乘积,试求出较大的那个质数。输入格式输入只有一行,包含一个正整数n输出格式输出只有一行,包含一个正整数p,即较大的那个质数。样例输入21样例输出7python代码importmathn=int(input())j=int(math.sqrt(n))foriinrange(2,j
- 深度学习/机器学习入门基础数学知识整理(一):线性代数基础,矩阵,范数等
chljerry_mouse
线性代数深度学习机器学习
前面大概有2年时间,利用业余时间断断续续写了一个机器学习方法系列,和深度学习方法系列,还有一个三十分钟理解系列(一些趣味知识);新的一年开始了,今年给自己定的学习目标——以补齐基础理论为重点,研究一些基础课题;同时逐步继续写上述三个系列的文章。最近越来越多的研究工作聚焦研究多层神经网络的原理,本质,我相信深度学习并不是无法掌控的“炼金术”,而是真真实实有理论保证的理论体系;本篇打算摘录整理一些最最
- 《音视频:将h264裸流转为YUV》
编程界的小学生、
音视频开发音视频嵌入式
文章目录一,前言二,分解步骤2.1初始化解码器2.2释放解码器资源2.3获取完整帧数据2.4h264转yuv2.5h264裸流文件转yuv2.6解RTP包后h264转yuv三,完整代码一,前言本文旨在将h264裸流数据转为yuv数据,分为两种情况一种是读取h264文件,一次性将读取到的所有h264数据给到解码器转为yuv,一种是从网络中接收含h264数据的RTP,这种情况下需要先对RTP包进行解包
- 2024-05-21 问AI: 介绍一下大语言模型的推理过程。
BigSharkTech 必杀技
用AI来理解AI人工智能语言模型自然语言处理
文心一言大语言模型的推理过程是一个复杂而精细的序列,它结合了深度学习和自然语言处理的技术,旨在理解和生成人类可以理解的自然语言文本。以下是该过程的主要步骤:输入文本的解析:当用户输入一段文本时,大语言模型首先会通过一个称为分词器的工具(tokenizer)对输入文本进行解析。分词器会将文本分解为一系列的单词或子词(tokens),并将它们转换为数字形式的序列。这些数字通常是单词在模型词典(voca
- 从原理和公式出发:python实现One_Way_ANOVA
^哪来的&永远~
python算法概率论
文章目录目的:python实现onewayANOVA单因素方差分析1.代码流程2.python代码实现0主要的函数1加载数据2查看数据统计结果3数据处理及可视化4方差分析4.1模型拟合4.2单因素方差分析5PostHoct-test组间比较分析6根据定义自行分解计算对比调用函数的结果7获取F分布对应的P值3.方差分析公式及原理参考目的:python实现onewayANOVA单因素方差分析方差分析(
- 双检锁问题
越甲八千
【道阻且长C++】c++
双检锁(Double-CheckedLocking,DCL)在早期的C++实现中存在问题,但在C++11及以后的标准中可以通过适当的处理来解决这些问题。下面详细分析双检锁存在的问题以及对应的解决办法。早期双检锁存在的问题指令重排序问题在早期的C++中,编译器和处理器为了提高性能,会对指令进行重排序。在双检锁实现单例模式时,创建对象的操作instance=newSingleton();可以分解为以下
- Python——程序设计方法
上课不要睡觉了
Python知识体系python算法c++
Python——程序设计方法程序是完成一定功能的指令的集合,用于解决特定的计算问题。按照软件工程的思想,程序设计可以分为分析、设计、实现、测试、运行等阶段。结构化程序设计是一种典型的程序设计方法,是程序设计的基础思想,它是把一个复杂程序逐级分解成若干个相互独立的程序,然后再对每个程序进行设计与实现。程序在具体实现上遵循了一定的模式,典型的程序设计模式是IPO模式,也就是程序由输入(Input)、处
- 网络安全之RSA算法
网安-轩逸
web安全安全
1978年就出现了这种算法,它是第一个既能用于数据加密也能用于数字签名的算法。它易于理解和操作,也很流行。算法的名字以发明者的名字(RonRivest,AdiShamir和LeonardAdleman)命名。但RSA的安全性一直未能得到理论上的证明。RSA的安全性依赖于大数分解。公钥和私钥都是两个大素数(大于100个十进制位)的函数。据猜测,从一个密钥和密文推断出明文的难度等同于分解两个大素数的积
- 从“建议者”到“执行者”:Manus如何重新定义AI代理的边界——基于GAIA基准测试的深度技术解析与行业启示
ByteForge
人工智能人工智能机器人githubchatgpt
引言:AIAgent的“GPT时刻”2025年3月6日,中国团队Monica.im推出的全球首款通用型AIAgent产品Manus正式开启内测,一夜之间引爆科技圈。不同于传统AI的“建议生成”模式,Manus实现了从任务分解、工具调用到成果交付的全流程自动化,被用户称为“数字世界中的全能实习生”本文将从技术架构、任务闭环能力、行业影响三个维度,对比Manus与现有AI产品的代际差异。一、技术架构革
- 搞懂 Manus 技术原理,用开源的 Proxy Lite 你也可以构建自己的智能助理
程序猿李巡天
人工智能neo4j知识图谱机器人学习
Manus的技术并没有多么高大上,技术原理主要基于其创新的“多代理架构”(MultipleAgentArchitecture),这一架构通过将复杂任务分解为规划、执行和验证三个阶段,并由多个独立的AI代理协同完成,从而实现高效、可靠的任务处理。多代理架构:Manus的核心技术是其多代理架构,该架构模仿人类的“Plan-Do-Check-Act”(计划-执行-检查-行动)工作流程。具体来说,任务被拆
- 微软的OmniParser简介
RA AI衍生者训练营
java数据库人工智能ai开发语言
介绍AI代理可以通过一系列思维过程分解高度模糊的问题,类似于人类的推理,从而处理这些问题。这些代理可以使用各种工具(包括程序、API、网络搜索等)来执行任务并寻找解决方案。该图说明了组成AIAgent的各种组件,包括其网页浏览功能以及导出手机屏幕、桌面视图和网页浏览器的功能。限制AI代理主要依靠基于API的方法来访问数据和其他资源。为了使AI代理实现更高水平的自主性,引入更多模式至关重要。最近,人
- 设计模式之建造者模式:原理、实现与应用
wenbin_java
设计模式建造者模式
引言建造者模式(BuilderPattern)是一种创建型设计模式,它通过将复杂对象的构建过程分解为多个简单的步骤,使得对象的创建更加灵活和可维护。建造者模式特别适用于构建具有多个组成部分的复杂对象。本文将深入探讨建造者模式的原理、实现方式以及实际应用场景,帮助你更好地理解和使用这一设计模式。1.建造者模式的核心概念1.1什么是建造者模式?建造者模式是一种创建型设计模式,它将复杂对象的构建过程与其
- 机器学习背后的数学芝士
小技工丨
机器学习机器学习人工智能
在当今快速发展的科技领域,机器学习作为人工智能的核心技术之一,正在深刻地改变我们的生活和工作方式。本文将了解一下机器学习背后的关键数学芝士。线性代数:数据处理的基础工具向量与矩阵向量是有序数字的集合,常用于表示数据点,例如用户的特征向量可能包括年龄、性别、收入等信息。矩阵则是二维数组,广泛应用于数据集的表示和变换操作。线性变换线性变换描述了向量在空间中的拉伸、压缩或旋转过程。这类变换在数据预处理、
- 逆向工程是什么?
不知道是谁2
逆向工程科普
逆向工程(ReverseEngineering,RE)是一种技术实践,主要用于分析和理解已存在的软件、硬件、文档或其他复杂系统的内部结构和工作原理。它的目标不是直接复制它们,而是通过分解、研究和重现其设计或实现过程,以便于修改、改进、学习、维护或者创建兼容组件。在软件领域,逆向工程师可能会反汇编二进制代码以查看原始源代码,解密加密程序,或者分析API和系统架构。这有助于破解软件、调试未公开的代码、
- 量子计算基础数学
诸葛思颖
量子计算与编程入门线性代数
文章目录前言一、向量表示和向量运算向量的表示向量的运算二、线性算子和矩阵线性算子几个简单的常用算子三、特征值和特征向量谱分解(SpecialDecomposition)谱分解的作用四、张量积与迹向量的张量积矩阵的张量积张量积操作规则迹(Trace)总结前言本文根据“本源溯知”平台>量子课堂>基本概念>5.本源量子基础数学教学视频进行知识整理,观看视频请点击:本源量子基础数学。一、向量表示和向量运算
- 解读Servlet原理篇二---GenericServlet与HttpServlet
周凡杨
javaHttpServlet源理GenericService源码
在上一篇《解读Servlet原理篇一》中提到,要实现javax.servlet.Servlet接口(即写自己的Servlet应用),你可以写一个继承自javax.servlet.GenericServletr的generic Servlet ,也可以写一个继承自java.servlet.http.HttpServlet的HTTP Servlet(这就是为什么我们自定义的Servlet通常是exte
- MySQL性能优化
bijian1013
数据库mysql
性能优化是通过某些有效的方法来提高MySQL的运行速度,减少占用的磁盘空间。性能优化包含很多方面,例如优化查询速度,优化更新速度和优化MySQL服务器等。本文介绍方法的主要有:
a.优化查询
b.优化数据库结构
- ThreadPool定时重试
dai_lm
javaThreadPoolthreadtimertimertask
项目需要当某事件触发时,执行http请求任务,失败时需要有重试机制,并根据失败次数的增加,重试间隔也相应增加,任务可能并发。
由于是耗时任务,首先考虑的就是用线程来实现,并且为了节约资源,因而选择线程池。
为了解决不定间隔的重试,选择Timer和TimerTask来完成
package threadpool;
public class ThreadPoolTest {
- Oracle 查看数据库的连接情况
周凡杨
sqloracle 连接
首先要说的是,不同版本数据库提供的系统表会有不同,你可以根据数据字典查看该版本数据库所提供的表。
select * from dict where table_name like '%SESSION%';
就可以查出一些表,然后根据这些表就可以获得会话信息
select sid,serial#,status,username,schemaname,osuser,terminal,ma
- 类的继承
朱辉辉33
java
类的继承可以提高代码的重用行,减少冗余代码;还能提高代码的扩展性。Java继承的关键字是extends
格式:public class 类名(子类)extends 类名(父类){ }
子类可以继承到父类所有的属性和普通方法,但不能继承构造方法。且子类可以直接使用父类的public和
protected属性,但要使用private属性仍需通过调用。
子类的方法可以重写,但必须和父类的返回值类
- android 悬浮窗特效
肆无忌惮_
android
最近在开发项目的时候需要做一个悬浮层的动画,类似于支付宝掉钱动画。但是区别在于,需求是浮出一个窗口,之后边缩放边位移至屏幕右下角标签处。效果图如下:
一开始考虑用自定义View来做。后来发现开线程让其移动很卡,ListView+动画也没法精确定位到目标点。
后来想利用Dialog的dismiss动画来完成。
自定义一个Dialog后,在styl
- hadoop伪分布式搭建
林鹤霄
hadoop
要修改4个文件 1: vim hadoop-env.sh 第九行 2: vim core-site.xml <configuration> &n
- gdb调试命令
aigo
gdb
原文:http://blog.csdn.net/hanchaoman/article/details/5517362
一、GDB常用命令简介
r run 运行.程序还没有运行前使用 c cuntinue 
- Socket编程的HelloWorld实例
alleni123
socket
public class Client
{
public static void main(String[] args)
{
Client c=new Client();
c.receiveMessage();
}
public void receiveMessage(){
Socket s=null;
BufferedRea
- 线程同步和异步
百合不是茶
线程同步异步
多线程和同步 : 如进程、线程同步,可理解为进程或线程A和B一块配合,A执行到一定程度时要依靠B的某个结果,于是停下来,示意B运行;B依言执行,再将结果给A;A再继续操作。 所谓同步,就是在发出一个功能调用时,在没有得到结果之前,该调用就不返回,同时其它线程也不能调用这个方法
多线程和异步:多线程可以做不同的事情,涉及到线程通知
&
- JSP中文乱码分析
bijian1013
javajsp中文乱码
在JSP的开发过程中,经常出现中文乱码的问题。
首先了解一下Java中文问题的由来:
Java的内核和class文件是基于unicode的,这使Java程序具有良好的跨平台性,但也带来了一些中文乱码问题的麻烦。原因主要有两方面,
- js实现页面跳转重定向的几种方式
bijian1013
JavaScript重定向
js实现页面跳转重定向有如下几种方式:
一.window.location.href
<script language="javascript"type="text/javascript">
window.location.href="http://www.baidu.c
- 【Struts2三】Struts2 Action转发类型
bit1129
struts2
在【Struts2一】 Struts Hello World http://bit1129.iteye.com/blog/2109365中配置了一个简单的Action,配置如下
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configurat
- 【HBase十一】Java API操作HBase
bit1129
hbase
Admin类的主要方法注释:
1. 创建表
/**
* Creates a new table. Synchronous operation.
*
* @param desc table descriptor for table
* @throws IllegalArgumentException if the table name is res
- nginx gzip
ronin47
nginx gzip
Nginx GZip 压缩
Nginx GZip 模块文档详见:http://wiki.nginx.org/HttpGzipModule
常用配置片段如下:
gzip on; gzip_comp_level 2; # 压缩比例,比例越大,压缩时间越长。默认是1 gzip_types text/css text/javascript; # 哪些文件可以被压缩 gzip_disable &q
- java-7.微软亚院之编程判断俩个链表是否相交 给出俩个单向链表的头指针,比如 h1 , h2 ,判断这俩个链表是否相交
bylijinnan
java
public class LinkListTest {
/**
* we deal with two main missions:
*
* A.
* 1.we create two joined-List(both have no loop)
* 2.whether list1 and list2 join
* 3.print the join
- Spring源码学习-JdbcTemplate batchUpdate批量操作
bylijinnan
javaspring
Spring JdbcTemplate的batch操作最后还是利用了JDBC提供的方法,Spring只是做了一下改造和封装
JDBC的batch操作:
String sql = "INSERT INTO CUSTOMER " +
"(CUST_ID, NAME, AGE) VALUES (?, ?, ?)";
- [JWFD开源工作流]大规模拓扑矩阵存储结构最新进展
comsci
工作流
生成和创建类已经完成,构造一个100万个元素的矩阵模型,存储空间只有11M大,请大家参考我在博客园上面的文档"构造下一代工作流存储结构的尝试",更加相信的设计和代码将陆续推出.........
竞争对手的能力也很强.......,我相信..你们一定能够先于我们推出大规模拓扑扫描和分析系统的....
- base64编码和url编码
cuityang
base64url
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StringWriter;
import java.io.UnsupportedEncodingException;
- web应用集群Session保持
dalan_123
session
关于使用 memcached 或redis 存储 session ,以及使用 terracotta 服务器共享。建议使用 redis,不仅仅因为它可以将缓存的内容持久化,还因为它支持的单个对象比较大,而且数据类型丰富,不只是缓存 session,还可以做其他用途,一举几得啊。1、使用 filter 方法存储这种方法比较推荐,因为它的服务器使用范围比较多,不仅限于tomcat ,而且实现的原理比较简
- Yii 框架里数据库操作详解-[增加、查询、更新、删除的方法 'AR模式']
dcj3sjt126com
数据库
public function getMinLimit () { $sql = "..."; $result = yii::app()->db->createCo
- solr StatsComponent(聚合统计)
eksliang
solr聚合查询solr stats
StatsComponent
转载请出自出处:http://eksliang.iteye.com/blog/2169134
http://eksliang.iteye.com/ 一、概述
Solr可以利用StatsComponent 实现数据库的聚合统计查询,也就是min、max、avg、count、sum的功能
二、参数
- 百度一道面试题
greemranqq
位运算百度面试寻找奇数算法bitmap 算法
那天看朋友提了一个百度面试的题目:怎么找出{1,1,2,3,3,4,4,4,5,5,5,5} 找出出现次数为奇数的数字.
我这里复制的是原话,当然顺序是不一定的,很多拿到题目第一反应就是用map,当然可以解决,但是效率不高。
还有人觉得应该用算法xxx,我是没想到用啥算法好...!
还有觉得应该先排序...
还有觉
- Spring之在开发中使用SpringJDBC
ihuning
spring
在实际开发中使用SpringJDBC有两种方式:
1. 在Dao中添加属性JdbcTemplate并用Spring注入;
JdbcTemplate类被设计成为线程安全的,所以可以在IOC 容器中声明它的单个实例,并将这个实例注入到所有的 DAO 实例中。JdbcTemplate也利用了Java 1.5 的特定(自动装箱,泛型,可变长度
- JSON API 1.0 核心开发者自述 | 你所不知道的那些技术细节
justjavac
json
2013年5月,Yehuda Katz 完成了JSON API(英文,中文) 技术规范的初稿。事情就发生在 RailsConf 之后,在那次会议上他和 Steve Klabnik 就 JSON 雏形的技术细节相聊甚欢。在沟通单一 Rails 服务器库—— ActiveModel::Serializers 和单一 JavaScript 客户端库——&
- 网站项目建设流程概述
macroli
工作
一.概念
网站项目管理就是根据特定的规范、在预算范围内、按时完成的网站开发任务。
二.需求分析
项目立项
我们接到客户的业务咨询,经过双方不断的接洽和了解,并通过基本的可行性讨论够,初步达成制作协议,这时就需要将项目立项。较好的做法是成立一个专门的项目小组,小组成员包括:项目经理,网页设计,程序员,测试员,编辑/文档等必须人员。项目实行项目经理制。
客户的需求说明书
第一步是需
- AngularJs 三目运算 表达式判断
qiaolevip
每天进步一点点学习永无止境众观千象AngularJS
事件回顾:由于需要修改同一个模板,里面包含2个不同的内容,第一个里面使用的时间差和第二个里面名称不一样,其他过滤器,内容都大同小异。希望杜绝If这样比较傻的来判断if-show or not,继续追究其源码。
var b = "{{",
a = "}}";
this.startSymbol = function(a) {
- Spark算子:统计RDD分区中的元素及数量
superlxw1234
sparkspark算子Spark RDD分区元素
关键字:Spark算子、Spark RDD分区、Spark RDD分区元素数量
Spark RDD是被分区的,在生成RDD时候,一般可以指定分区的数量,如果不指定分区数量,当RDD从集合创建时候,则默认为该程序所分配到的资源的CPU核数,如果是从HDFS文件创建,默认为文件的Block数。
可以利用RDD的mapPartitionsWithInd
- Spring 3.2.x将于2016年12月31日停止支持
wiselyman
Spring 3
Spring 团队公布在2016年12月31日停止对Spring Framework 3.2.x(包含tomcat 6.x)的支持。在此之前spring团队将持续发布3.2.x的维护版本。
请大家及时准备及时升级到Spring
- fis纯前端解决方案fis-pure
zccst
JavaScript
作者:zccst
FIS通过插件扩展可以完美的支持模块化的前端开发方案,我们通过FIS的二次封装能力,封装了一个功能完备的纯前端模块化方案pure。
1,fis-pure的安装
$ fis install -g fis-pure
$ pure -v
0.1.4
2,下载demo到本地
git clone https://github.com/hefangshi/f