- ISP(图像信号处理)算法概述、工作原理、架构、处理流程
2401_87555493
接口隔离原则信号处理算法
ISP处理流程:Bayer、黑电平补偿(blacklevelcompensation)、镜头矫正(lensshadingcorrection)、坏像素矫正(badpixelcorrection)、颜色插值(demosaic)、Bayer噪声去除、白平衡(AWB)矫正、色彩矫正(colorcorrection)、gamma矫正、色彩空间转换(RGB转换为YUV)、在YUV色彩空间上彩噪去除与边缘加强
- 【人生算法:解码命运背后的现代生存法则】
调皮的芋头
人工智能神经网络AIGC机器学习
人生算法:解码命运背后的现代生存法则在浙江义乌小商品市场,一个初中毕业的摊主能流利使用八国语言;在深圳华强北,草根创业者凭一款充电宝设计获得千万融资。这些当代传奇背后,暗合着古老东方智慧的结构性密码。当我们用社会科学的手术刀解剖"一命二运三风水"的千年古训,发现其本质是套精密的人生算法系统。一、先天参数:人生操作系统的初始配置基因遗传构成命运的基础代码。哈佛大学行为遗传学研究显示,身高、智力等特质
- 2025年保安员职业资格证考试题库
100分题库小栗子
笔记其他
保安员考试题目及答案:单选题1、我国第一家保安服务公司诞生地是()A.北京B.上海C.广州D.深圳答案:D2、根据《保安服务管理条例》规定,取得《保安员证》的身体条件是()A.身高必须达到1.65米以上B.达到国家规定的体能标准C.身体健康D.眼睛不能近视答案:C3、实施加压包扎止血时,敷料的大小应该()A.与伤口大小相同B.超过伤口周边3厘米C.比伤口周边小D.超过伤口周边1厘米答案:B4、机动
- 【OpenAPI】票证图像检测和矫正
勇敢牛牛_
oneapioneapi目标检测
API简介检测一张图片中是否存在票证(发票、银行卡、证件等),如果存在则返回置信度、边界框以及提取出的票证图像。API信息接口地址:https://oneapi.coderbox.cn/openapi/api/detect/ticket-correction请求方式:POST调用类型:同步接口参数BODY参数参数名类型必填含义说明imageUrlstring是待检测的图片地址图片大需小于3M响应参
- 为什么C/C++能一直排在编程语言前列?揭秘“常青树”的底层王者逻辑 [特殊字符]
sveewg
IT前沿c++开发语言pythonjavac语言c#r语言
目录一、底层掌控力:代码与硬件的“零距离对话”二、生态帝国:万亿代码筑起的“数字罗马”️三、教育霸权:程序员的能力“试金石”⚔️四、争议与进化:在安全与性能间走钢丝五、未来预言:C/C++的“无形帝国”“用C++写代码,就像用手术刀雕刻芯片!”在Python称霸AI、Rust狂揽安全红利的今天,C/C++仍以底层统治力和生态霸权稳居编程语言金字塔顶端。TIOBE2025年2月榜单显示,C++以11
- 大模型在高血压预测及围手术期管理中的应用研究报告
LCG元
围术期危险因子预测模型研究人工智能算法机器学习
目录一、引言1.1研究背景与意义1.2研究目的1.3国内外研究现状二、大模型预测高血压的原理与方法2.1常用大模型介绍2.2数据收集与预处理2.3模型训练与验证三、术前风险预测与手术方案制定3.1术前风险因素分析3.2大模型预测术前风险的方法与结果3.3基于预测结果的手术方案制定四、术中风险预测与麻醉方案制定4.1术中风险因素分析4.2大模型实时监测与风险预测4.3基于预测结果的麻醉方案制定五、术
- 围术期肿瘤风险因子及多维度应对策略研究报告
LCG元
围术期危险因子预测模型研究信息系统vue.js信息系统人工智能
一、引言1.1研究背景与意义在肿瘤治疗领域,手术作为关键手段,其围术期管理对患者的治疗效果、康复进程及长期预后影响深远。围术期涉及术前、术中、术后等多个阶段,各阶段均存在诸多风险因子,这些因子不仅影响手术的顺利实施,还与并发症的发生、患者的生存质量及远期预后紧密相关。深入研究围术期肿瘤风险因子,精准识别并有效干预,对于降低手术风险、减少并发症发生率、提升患者生存率及生活质量具有重要意义。大量临床实
- 基于大模型的脂肪栓塞综合征风险预测与综合治疗方案研究报告
LCG元
围术期危险因子预测模型研究人工智能算法机器学习
目录一、引言1.1研究背景与意义1.2国内外研究现状1.3研究目的与方法二、脂肪栓塞综合征概述2.1定义与发病机制2.2病因与危险因素2.3临床表现与分类2.4诊断标准与方法三、大模型在脂肪栓塞综合征预测中的应用3.1大模型简介3.2数据收集与预处理3.3模型训练与验证3.4预测结果分析四、基于预测结果的手术方案制定4.1术前评估4.2手术方式选择4.3手术注意事项五、基于预测结果的麻醉方案制定5
- 25年第二本书【你的生存本能正在杀死你】
刺客-Andy
杂谈其他
与本能和解:一场现代心灵的进化之旅——读《你的生存本能正在杀死你》一、当原始代码撞上数字文明在非洲草原上,我们的祖先依靠敏锐的生存本能躲过剑齿虎的利齿;而今天,同样的神经警报却在午夜被手机屏幕的蓝光频繁触发。马克·舍恩的《你的生存本能正在杀死你》像一把锋利的手术刀,剖开了现代人最隐秘的生存悖论:那些曾让我们活下来的本能反应,正在以焦虑、失眠和慢性疾病的方式,缓慢地谋杀我们的生命质量。书中揭示的真相
- 大模型在白血病诊疗全流程风险预测与方案制定中的应用研究
LCG元
围术期危险因子预测模型研究人工智能
目录一、绪论1.1研究背景与意义1.2国内外研究现状1.3研究目的与内容二、大模型技术与白血病相关知识2.1大模型技术原理与特点2.2白血病的病理生理与诊疗现状三、术前风险预测与手术方案制定3.1术前数据收集与预处理3.2大模型预测术前风险3.3根据预测制定手术方案四、术中风险预测与麻醉方案优化4.1术中实时数据监测与采集4.2大模型动态风险预测4.3基于预测调整麻醉方案五、术后风险预测与护理方案
- 大模型在心力衰竭预测及临床方案制定中的应用研究报告
LCG元
围术期危险因子预测模型研究人工智能
目录一、引言1.1研究背景与意义1.2研究目的1.3研究方法与创新点二、大模型技术与心力衰竭概述2.1大模型技术原理与发展2.2心力衰竭的病理机制与现状三、大模型在心力衰竭术前风险预测中的应用3.1数据收集与预处理3.2预测模型的构建与训练3.3模型评估与验证3.4基于预测结果的手术方案制定四、大模型在心力衰竭术中风险预测中的应用4.1术中数据监测与获取4.2风险预测模型的实时更新与应用4.3针对
- ISP 常见流程
blanklog
接口隔离原则
1.sensor输出:一般为raw-OB+pedestal。加pedestal避免减OB出现负值,同时保证信号超过ADC最小电压阈值,使信号落在ADC正常工作范围。2.pedestalcorrection:移除sensor加的基底,确保后续处理信号起点正确。3.Linearization:sensor在对光强的记录可能是非线性的,特别是在工作范围两端。矫正后保证记录数值跟光强成线性关系。4.DPC
- 基于大模型的肺纤维化预测及临床方案研究报告
LCG元
围术期危险因子预测模型研究人工智能
目录一、引言1.1研究背景与意义1.2研究目的与方法二、大模型技术概述2.1大模型的基本原理2.2大模型在医疗领域的应用现状三、肺纤维化相关知识3.1肺纤维化的病因与发病机制3.2肺纤维化的临床症状与诊断方法3.3肺纤维化的治疗现状与挑战四、大模型预测肺纤维化的方法4.1数据收集与预处理4.2模型选择与构建4.3模型训练与优化4.4模型评估与验证五、大模型在肺纤维化术前预测中的应用5.1手术风险评
- 虚拟现实医疗:技术创新与应用前景
给生活加糖!
热门知识vr
虚拟现实(VirtualReality,VR)医疗是近年来随着虚拟现实技术的快速发展而崛起的一个新兴领域,它结合了计算机图形学、传感技术、互动技术与医学的深度融合,通过模拟真实的三维虚拟环境,让医生、患者、医务人员能够在安全、可控的虚拟世界中进行操作、治疗与学习。虚拟现实医疗技术不仅推动了医学教育的革新,还为治疗、康复、心理治疗、手术模拟等方面开辟了新的道路。本文将全面分析虚拟现实医疗的概念、应用
- 未来已来:AI助手DeepSeek在医院的现实
need help
闲人闲谈人工智能
听说最近医疗界出了位“电子华佗”,连三甲医院的专家都抢着给它发“实习证明”?北京某医院神经外科的主任医师田向阳表示:“DeepSeek对于超复杂脑瘤患者的病情诊断,至少它的水平相当于一个省级三甲医院专家的水平,患者应用它应该比较靠谱”。好家伙,现在AI都开始和医生抢手术刀了?AI问诊:从“青铜”到“王者”的逆袭要知道,过去某些AI看病堪比星座博主——说的头头是道,结果一查全是片儿汤话。但DeepS
- 【深度学习】Adam优化器
九筠
机器学习深度学习人工智能
目录1什么是Adam1.1基本概念1.2Adam的数学理解1.2.1计算一阶矩估计(mean)1.2.2计算二阶矩估计(uncenteredvariance)1.2.3矫正一阶矩估计(mean)和二阶矩估计(uncenteredvariance)的偏差1.2.4更新模型参数1.3Adam的简单理解2Adam优化算法怎么用2.1导入所需的库和模块2.2定义模型和损失函数2.3定义优化器2.4在训练循
- 桑黄消结节:甲状腺与乳腺结节的天然疗法
桑黄研究员
人工智能健康医疗
——科学解读千年药菌的抗炎与免疫调节密码一、结节危机:现代人的“隐形健康杀手”甲状腺结节与乳腺结节已成为现代人高发疾病。数据显示,我国甲状腺结节检出率超20%,乳腺增生性结节发病率高达70%。西医治疗以手术和药物为主,但存在创伤大、易复发等问题。而中医古籍中记载的桑黄,凭借抗炎、免疫调节与软坚散结三重作用,正成为结节管理的天然选择。二、桑黄消结节的科学机制1.抗炎成分:阻断结节生长的“导火索”慢性
- Wi-Fi 8(802.11bn)的超高可靠性特性介绍
WPG大大通
QUALCOMM产线大大通wifi无线网络自动化网络安全应用前景
Wi-Fi8,即IEEE802.11bn标准,是继Wi-Fi7之后的下一代无线网络技术。这项新技术的目标是提供超高可靠性(UltraHighReliability的无线网域连接,特别适用于对低延迟和高稳定性有严格要求的应用,如扩增实境/虚拟实境(AR/VR)、工业自动化和远端医疗手术等。Wi-Fi8的主要特点包括:1.提高吞吐量:使通过MAC数据服务测得的吞吐量提高25%。2.降低延迟:减少25%
- 揭秘DeepSeek代码改写提示词:从低效代码到工业级优化的AI魔法
老六哥_AI助理指南
DeepSeek人工智能DeepSeek
揭秘DeepSeek代码改写提示词:从低效代码到工业级优化的AI魔法引言:代码改写——AI时代的"编程外科手术"在软件工程领域,代码改写(CodeRefactoring)既是基本功也是高阶技能。传统开发中,开发者需要同时兼顾功能实现、性能优化、边界条件处理等多维目标,而DeepSeek的代码改写提示词技术,通过其独特的模型架构与提示词工程,正在重构这一过程的底层逻辑。本文将从技术原理、实践方法论、
- OpenCV开发笔记(八十一):通过棋盘格使用鱼眼方式标定相机内参矩阵矫正摄像头图像
长沙红胖子Qt(技术Q群4597637)
Qt开发图形图像处理OpenCV图像处理opencv鱼眼畸变矫正鱼眼摄像头标定
若该文为原创文章,转载请注明原文出处本文章博客地址:https://hpzwl.blog.csdn.net/article/details/142614975长沙红胖子Qt(长沙创微智科)博文大全:开发技术集合(包含Qt实用技术、树莓派、三维、OpenCV、OpenGL、ffmpeg、OSG、单片机、软硬结合等等)持续更新中…OpenCV开发专栏(点击传送门)上一篇:《OpenCV开发笔记(八十)
- 学习笔记-三维超声相关知识
May_ZhaoHM
基础知识学习
三维超声相关知识三维超声成像本质是断层成像,和CT与磁共振不同的点在,CT等通常是以缓慢的速度来获取切片的获取。超声高速率,且图像方向可变。二维超声的局限性:依赖于诊断医生的经验和知识来操作超声换能器,将二维图像完全转换成三维组织结构,并进行诊断或执行介入过程。这种困难主要是由于使用空间灵活的二维成像技术来观察三维解剖结构造成的。超声引导的治疗过程尤其受到影响,因为在手术过程中或在一段时间内量化和
- OpenCV中投影变换的代码实现
AI_dataloads
opencv计算机视觉人工智能
目录引言技术背景变换过程完整代码展示运行结果引言投影变换是计算机视觉和图像处理领域中常用的技术之一。它可以用于将图像从一个透视关系映射到另一个透视关系,常见的应用包括图像矫正、景深变化、以及虚拟实境的创建。本文将介绍如何使用OpenCV中的cv2.warpPerspective函数进行投影变换。技术背景投影变换的核心是使用一个3x3的变换矩阵,这个矩阵将源图像中的点映射到目标图像中的对应点。这个变
- Day31-【AI思考】-深度学习方法论全解析——科学提升学习效率的终极指南
一个一定要撑住的学习者
#AI深度思考学习方法人工智能
文章目录深度学习方法论全解析——科学提升学习效率的终极指南**一、影子跟读法(Shadowing)——听力突破核武器****二、番茄工作法(Pomodoro)——时间管理手术刀****三、费曼技巧(FeynmanTechnique)——知识内化加速器****四、康奈尔笔记(CornellNotes)——信息处理引擎**效能倍增组合技常见问题解决方案深度学习方法论全解析——科学提升学习效率的终极指南
- Day31-【AI思考】-关键支点识别与战略聚焦框架
一个一定要撑住的学习者
#AI深度思考学习方法人工智能
文章目录关键支点识别与战略聚焦框架**第一步:支点目标四维定位法****第二步:支点验证里程碑设计****第三步:目标网络重构方案****第四步:动态监控仪表盘**执行工具箱核心心法关键支点识别与战略聚焦框架让思想碎片重焕生机的灵魂:在当前纷繁复杂的目标清单中,哪一项是只要达成就能引发其他目标多米诺式突破的关键支点?这个支点是否具备可被验证的阶段性里程碑?”这个问题像精准的手术刀,旨在帮助您:识别
- Python入门教程丨3.2 再见Excel!用Python这5个模块,我把3天工作压缩到3分钟
凌小添
Python教程pythonexcel开发语言
⭐还在用Excel手动算均值方差?还在为海量数据统计熬夜加班?用Python这5把「数据手术刀」写一次代码,就能直接复用,专业报告自动生成!本期内容:模块核心功能应用场景math数学计算几何、物理模拟random生成随机数据游戏、抽样测试statistics统计分析回归分析、市场调研numpy数组与矩阵运算图像处理、机器学习pandas表格数据处理与分析金融分析、数据清洗一、基础数学库1.1mat
- NLP模型大对比:Transformer >Seq2Seq > LSTM > RNN > n-gram
feifeikon
自然语言处理transformerbert
结论Transformer大于传统的Seq2Seq大于LSTM大于RNN大于传统的n-gramn-gramVSTransformer我们可以用一个图书馆查询的类比来解释它们的差异:一、核心差异对比维度n-gram模型Transformer工作方式固定窗口的"近视观察员"全局关联的"侦探"依赖距离只能看前N-1个词(如3-gram只看前2词)可关注任意距离的上下文语义理解机械统计共现频率理解词语间的
- 程序员护眼指南:Windows设置护眼色
英国老鼠_
安装配置windows护眼色
白领工作难免长期面对电脑屏幕,时间长了会导致眼镜干涩、视力加深等问题,推荐走以下几步:(1)为显示器贴上防蓝光膜,可在淘宝上搜索“显示器防蓝光膜”(2)降低屏幕亮度,安装护眼软件,如f.lux,或在腾讯电脑管家中打开工具箱-健康小助手-护眼卫士来调整护眼色的色调。个人推荐后者。(3)佩戴防蓝光眼镜,可在京东上搜索“小米防蓝光眼镜”,在小米旗舰店上购买99元的防蓝光眼镜。近视的朋友建议下次配眼镜时加
- DRG_DIP 2.0时代医院程序结构转型与数据结构优化研究
Allen_LVyingbo
数智化医院2025健康医疗sqlserver数据库架构
一、引言1.1DRG_DIP2.0改革背景与意义医保支付方式改革在医疗保障制度改革中占据着极为关键的地位,是推动医疗领域变革的核心力量。它犹如一把精准的手术刀,对医疗资源的合理分配、医疗服务质量的稳步提升以及医疗费用的有效控制起着决定性作用。在这一改革进程中,DRG(Diagnosis-RelatedGroups,疾病诊断相关分组)和DIP(Diagnosis-InterventionPacket
- DRG/DIP医保结算中的偏差病例
DIPDRG分组器团队
dip大数据
低倍率病例什么是低倍率?1、《国家医疗保障疾病诊断相关分组(CHS-DRG)分组与付费技术规范》中规定低倍率病例入组后住院费用一般低于该DRG病组支付标准30%。2、DIP低倍率病例入组后住院费用一般低于该DIP病种次均费用50%。低倍率病例产生的主要原因一是入组错误,即主要诊断选择错误、其他诊断或手术操作错填等,导致错误入组;二是治疗不充分,即患者由于病情过重出现死亡或者自身意愿提前自动出院,整
- 2024年人工智能领域发生了哪些事儿?全球AI大事件1至12月盘点
人工智能aigc
2024年,对人工智能(AI)而言是激动人心的一年。这一年不仅见证了AI技术的全面突破,也深刻改变了社会生活的方方面面。从金融到医疗、从教育到娱乐,AI的深度渗透无处不在。显然,这项技术已经从概念走向普及,并开始重新定义我们的未来。一月:人机交互技术的崭新开端2024年1月30日:Neuralink脑机接口植入Neuralink宣布,首名人类成功接受脑机接口芯片植入手术。这项手术由机器人完成,芯片
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不