System.loadLibrary()是我们在使用Java的JNI机制时,会用到的一个非常重要的函数,它的作用即是把实现了我们在Java code中声明的native方法的那个libraryload进来,或者load其他什么动态连接库。
算是处于好奇吧,我们可以看一下这个方法它的实现,即执行流程。(下面分析的那些code,来自于android 4.2.2 aosp版。)先看一下这个方法的code(在libcore/luni/src/main/java/java/lang/System.java这个文件中):
/** * Loads and links the library with the specified name. The mapping of the * specified library name to the full path for loading the library is * implementation-dependent. * * @param libName * the name of the library to load. * @throws UnsatisfiedLinkError * if the library could no<span style="color:#003399;"></span>t be loaded. */ public static void loadLibrary(String libName) { Runtime.getRuntime().loadLibrary(libName, VMStack.getCallingClassLoader()); }
由上面的那段code,可以看到,它的实现非常简单,就只是先调用VMStack.getCallingClassLoader()获取到ClassLoader,然后再把实际要做的事情委托给了Runtime来做而已。接下来我们再看一下Runtime.loadLibrary()的实现(在libcore/luni/src/main/java/java/lang/Runtime.java这个文件中):
/* * Loads and links a library without security checks. */ void loadLibrary(String libraryName, ClassLoader loader) { if (loader != null) { String filename = loader.findLibrary(libraryName); if (filename == null) { throw new UnsatisfiedLinkError("Couldn't load " + libraryName + " from loader " + loader + ": findLibrary returned null"); } String error = nativeLoad(filename, loader); if (error != null) { throw new UnsatisfiedLinkError(error); } return; } String filename = System.mapLibraryName(libraryName); List<String> candidates = new ArrayList<String>(); String lastError = null; for (String directory : mLibPaths) { String candidate = directory + filename; candidates.add(candidate); if (new File(candidate).exists()) { String error = nativeLoad(candidate, loader); if (error == null) { return; // We successfully loaded the library. Job done. } lastError = error; } } if (lastError != null) { throw new UnsatisfiedLinkError(lastError); } throw new UnsatisfiedLinkError("Library " + libraryName + " not found; tried " + candidates); }
这段code,又牵出几个问题,首先,可用的library path都是哪些,这实际上也决定了,我们的so文件放在哪些folder下,才可以被真正load起来?其次,在native层load library的过程,又实际做了什么事情?下面会对这两个问题,一一的作出解答。
我们由简单到复杂的来看这个问题。先来看一下,在传入的ClassLoader为空的情况(尽管我们知道,在System.loadLibrary()这个case下不会发生),前面Runtime.loadLibrary()的实现中那个mLibPaths的初始化的过程,在Runtime的构造函数中,如下:
/** * Prevent this class from being instantiated. */ private Runtime(){ String pathList = System.getProperty("java.library.path", "."); String pathSep = System.getProperty("path.separator", ":"); String fileSep = System.getProperty("file.separator", "/"); mLibPaths = pathList.split(pathSep); // Add a '/' to the end so we don't have to do the property lookup // and concatenation later. for (int i = 0; i < mLibPaths.length; i++) { if (!mLibPaths[i].endsWith(fileSep)) { mLibPaths[i] += fileSep; } } }
|
可以看到,那个library path list实际上读取自一个system property。那在android系统中,这个system property的实际内容又是什么呢?dump这些内容出来,就像下面这样:
05-11 07:51:40.974: V/QRCodeActivity(11081): pathList = /vendor/lib:/system/lib 05-11 07:51:40.974: V/QRCodeActivity(11081): pathSep = : 05-11 07:51:40.974: V/QRCodeActivity(11081): fileSep = /
|
然后是传入的ClassLoader非空的情况,ClassLoader的findLibrary()方法的执行过程。首先看一下它的实现(在libcore/luni/src/main/java/java/lang/ClassLoader.java这个文件中):
/** * Returns the absolute path of the native library with the specified name, * or {@code null}. If this method returns {@code null} then the virtual * machine searches the directories specified by the system property * "java.library.path". * <p> * This implementation always returns {@code null}. * </p> * * @param libName * the name of the library to find. * @return the absolute path of the library. */ protected String findLibrary(String libName) { return null; } |
|
竟然是一个空函数。那系统中实际运行的ClassLoader就是这个吗?我们可以做一个小小的实验,打印系统中实际运行的ClassLoader的String:
|
ClassLoader classLoader = getClassLoader(); |
|
Log.v(TAG, "classLoader = " + classLoader.toString()); |
|
05-11 08:18:57.857: V/QRCodeActivity(11556): classLoader = dalvik.system.PathClassLoader[dexPath=/data/app/com.qrcode.qrcode-1.apk,libraryPath=/data/app-lib/com.qrcode.qrcode-1] |
@Override public String findLibrary(String name) { return pathList.findLibrary(name); }
/** * Constructs an instance. * * @param dexPath the list of jar/apk files containing classes and * resources, delimited by {@code File.pathSeparator}, which * defaults to {@code ":"} on Android * @param optimizedDirectory directory where optimized dex files * should be written; may be {@code null} * @param libraryPath the list of directories containing native * libraries, delimited by {@code File.pathSeparator}; may be * {@code null} * @param parent the parent class loader */ public BaseDexClassLoader(String dexPath, File optimizedDirectory, String libraryPath, ClassLoader parent) { super(parent); this.originalPath = dexPath; this.originalLibraryPath = libraryPath; this.pathList = new DexPathList(this, dexPath, libraryPath, optimizedDirectory); }
BaseDexClassLoader的构造函数也不用多做解释吧。然后是DexPathList的构造函数:
/** * Constructs an instance. * * @param definingContext the context in which any as-yet unresolved * classes should be defined * @param dexPath list of dex/resource path elements, separated by * {@code File.pathSeparator} * @param libraryPath list of native library directory path elements, * separated by {@code File.pathSeparator} * @param optimizedDirectory directory where optimized {@code .dex} files * should be found and written to, or {@code null} to use the default * system directory for same */ public DexPathList(ClassLoader definingContext, String dexPath, String libraryPath, File optimizedDirectory) { if (definingContext == null) { throw new NullPointerException("definingContext == null"); } if (dexPath == null) { throw new NullPointerException("dexPath == null"); } if (optimizedDirectory != null) { if (!optimizedDirectory.exists()) { throw new IllegalArgumentException( "optimizedDirectory doesn't exist: " + optimizedDirectory); } if (!(optimizedDirectory.canRead() && optimizedDirectory.canWrite())) { throw new IllegalArgumentException( "optimizedDirectory not readable/writable: " + optimizedDirectory); } } this.definingContext = definingContext; this.dexElements = makeDexElements(splitDexPath(dexPath), optimizedDirectory); this.nativeLibraryDirectories = splitLibraryPath(libraryPath); }
关于我们的library path的问题,可以只关注最后的那个splitLibraryPath(),这个地方,实际上即是把传进来的libraryPath 又丢给splitLibraryPath来获取library path 的list。可以看一下DexPathList.splitLibraryPath()的实现:
/** * Splits the given library directory path string into elements * using the path separator ({@code File.pathSeparator}, which * defaults to {@code ":"} on Android, appending on the elements * from the system library path, and pruning out any elements that * do not refer to existing and readable directories. */ private static File[] splitLibraryPath(String path) { /* * Native libraries may exist in both the system and * application library paths, and we use this search order: * * 1. this class loader's library path for application * libraries * 2. the VM's library path from the system * property for system libraries * * This order was reversed prior to Gingerbread; see http://b/2933456. */ ArrayList<File> result = splitPaths( path, System.getProperty("java.library.path", "."), true); return result.toArray(new File[result.size()]); }
这个地方,是在用两个部分的library path list来由splitPaths构造最终的那个path list,一个部分是,传进来的library path,另外一个部分是,像我们前面看到的那个,是system property。然后再来看一下DexPathList.splitPaths()的实现:
/** * Splits the given path strings into file elements using the path * separator, combining the results and filtering out elements * that don't exist, aren't readable, or aren't either a regular * file or a directory (as specified). Either string may be empty * or {@code null}, in which case it is ignored. If both strings * are empty or {@code null}, or all elements get pruned out, then * this returns a zero-element list. */ private static ArrayList<File> splitPaths(String path1, String path2, boolean wantDirectories) { ArrayList<File> result = new ArrayList<File>(); splitAndAdd(path1, wantDirectories, result); splitAndAdd(path2, wantDirectories, result); return result; }
总结一下,ClassLoader的那个findLibrary()实际上会在两个部分的folder中去寻找System.loadLibrary()要load的那个library,一个部分是,构造ClassLoader时,传进来的那个library path,即是app folder,另外一个部分是system property。在android系统中,查找要load的library,实际上会在如下3个folder中进行:
上面第3个item只是一个例子,每一个app,它的那个app library path的最后一个部分都会是特定于那个app的。至于说,构造BaseDexClassLoader时的那个libraryPath 到底是怎么来的,那可能就会牵扯到android本身更复杂的一些过程了,在此不再做更详细的说明。
然后来看一下native层,把so文件load起的过程,先来一下nativeLoad()这个函数的实现(在JellyBean/dalvik/vm/native/java_lang_Runtime.cpp这个文件中):
/* * static String nativeLoad(String filename, ClassLoader loader) * * Load the specified full path as a dynamic library filled with * JNI-compatible methods. Returns null on success, or a failure * message on failure. */ static void Dalvik_java_lang_Runtime_nativeLoad(const u4* args, JValue* pResult) { StringObject* fileNameObj = (StringObject*) args[0]; Object* classLoader = (Object*) args[1]; char* fileName = NULL; StringObject* result = NULL; char* reason = NULL; bool success; assert(fileNameObj != NULL); fileName = dvmCreateCstrFromString(fileNameObj); success = dvmLoadNativeCode(fileName, classLoader, &reason); if (!success) { const char* msg = (reason != NULL) ? reason : "unknown failure"; result = dvmCreateStringFromCstr(msg); dvmReleaseTrackedAlloc((Object*) result, NULL); } free(reason); free(fileName); RETURN_PTR(result); }
可以看到,nativeLoad()实际上只是完成了两件事情,第一,是调用dvmCreateCstrFromString()将Java 的library path String 转换到native的String,然后将这个path传给dvmLoadNativeCode()做load,dvmLoadNativeCode()这个函数的实现在dalvik/vm/Native.cpp中,如下:
/* * Load native code from the specified absolute pathname. Per the spec, * if we've already loaded a library with the specified pathname, we * return without doing anything. * * TODO? for better results we should absolutify the pathname. For fully * correct results we should stat to get the inode and compare that. The * existing implementation is fine so long as everybody is using * System.loadLibrary. * * The library will be associated with the specified class loader. The JNI * spec says we can't load the same library into more than one class loader. * * Returns "true" on success. On failure, sets *detail to a * human-readable description of the error or NULL if no detail is * available; ownership of the string is transferred to the caller. */ bool dvmLoadNativeCode(const char* pathName, Object* classLoader, char** detail) { SharedLib* pEntry; void* handle; bool verbose; /* reduce noise by not chattering about system libraries */ verbose = !!strncmp(pathName, "/system", sizeof("/system")-1); verbose = verbose && !!strncmp(pathName, "/vendor", sizeof("/vendor")-1); if (verbose) ALOGD("Trying to load lib %s %p", pathName, classLoader); *detail = NULL; /* * See if we've already loaded it. If we have, and the class loader * matches, return successfully without doing anything. */ pEntry = findSharedLibEntry(pathName); if (pEntry != NULL) { if (pEntry->classLoader != classLoader) { ALOGW("Shared lib '%s' already opened by CL %p; can't open in %p", pathName, pEntry->classLoader, classLoader); return false; } if (verbose) { ALOGD("Shared lib '%s' already loaded in same CL %p", pathName, classLoader); } if (!checkOnLoadResult(pEntry)) return false; return true; } /* * Open the shared library. Because we're using a full path, the system * doesn't have to search through LD_LIBRARY_PATH. (It may do so to * resolve this library's dependencies though.) * * Failures here are expected when java.library.path has several entries * and we have to hunt for the lib. * * The current version of the dynamic linker prints detailed information * about dlopen() failures. Some things to check if the message is * cryptic: * - make sure the library exists on the device * - verify that the right path is being opened (the debug log message * above can help with that) * - check to see if the library is valid (e.g. not zero bytes long) * - check config/prelink-linux-arm.map to ensure that the library * is listed and is not being overrun by the previous entry (if * loading suddenly stops working on a prelinked library, this is * a good one to check) * - write a trivial app that calls sleep() then dlopen(), attach * to it with "strace -p <pid>" while it sleeps, and watch for * attempts to open nonexistent dependent shared libs * * This can execute slowly for a large library on a busy system, so we * want to switch from RUNNING to VMWAIT while it executes. This allows * the GC to ignore us. */ Thread* self = dvmThreadSelf(); ThreadStatus oldStatus = dvmChangeStatus(self, THREAD_VMWAIT); handle = dlopen(pathName, RTLD_LAZY); dvmChangeStatus(self, oldStatus); if (handle == NULL) { *detail = strdup(dlerror()); ALOGE("dlopen(\"%s\") failed: %s", pathName, *detail); return false; } /* create a new entry */ SharedLib* pNewEntry; pNewEntry = (SharedLib*) calloc(1, sizeof(SharedLib)); pNewEntry->pathName = strdup(pathName); pNewEntry->handle = handle; pNewEntry->classLoader = classLoader; dvmInitMutex(&pNewEntry->onLoadLock); pthread_cond_init(&pNewEntry->onLoadCond, NULL); pNewEntry->onLoadThreadId = self->threadId; /* try to add it to the list */ SharedLib* pActualEntry = addSharedLibEntry(pNewEntry); if (pNewEntry != pActualEntry) { ALOGI("WOW: we lost a race to add a shared lib (%s CL=%p)", pathName, classLoader); freeSharedLibEntry(pNewEntry); return checkOnLoadResult(pActualEntry); } else { if (verbose) ALOGD("Added shared lib %s %p", pathName, classLoader); bool result = true; void* vonLoad; int version; vonLoad = dlsym(handle, "JNI_OnLoad"); if (vonLoad == NULL) { ALOGD("No JNI_OnLoad found in %s %p, skipping init", pathName, classLoader); } else { /* * Call JNI_OnLoad. We have to override the current class * loader, which will always be "null" since the stuff at the * top of the stack is around Runtime.loadLibrary(). (See * the comments in the JNI FindClass function.) */ OnLoadFunc func = (OnLoadFunc)vonLoad; Object* prevOverride = self->classLoaderOverride; self->classLoaderOverride = classLoader; oldStatus = dvmChangeStatus(self, THREAD_NATIVE); if (gDvm.verboseJni) { ALOGI("[Calling JNI_OnLoad for \"%s\"]", pathName); } version = (*func)(gDvmJni.jniVm, NULL); dvmChangeStatus(self, oldStatus); self->classLoaderOverride = prevOverride; if (version != JNI_VERSION_1_2 && version != JNI_VERSION_1_4 && version != JNI_VERSION_1_6) { ALOGW("JNI_OnLoad returned bad version (%d) in %s %p", version, pathName, classLoader); /* * It's unwise to call dlclose() here, but we can mark it * as bad and ensure that future load attempts will fail. * * We don't know how far JNI_OnLoad got, so there could * be some partially-initialized stuff accessible through * newly-registered native method calls. We could try to * unregister them, but that doesn't seem worthwhile. */ result = false; } else { if (gDvm.verboseJni) { ALOGI("[Returned from JNI_OnLoad for \"%s\"]", pathName); } } } if (result) pNewEntry->onLoadResult = kOnLoadOkay; else pNewEntry->onLoadResult = kOnLoadFailed; pNewEntry->onLoadThreadId = 0; /* * Broadcast a wakeup to anybody sleeping on the condition variable. */ dvmLockMutex(&pNewEntry->onLoadLock); pthread_cond_broadcast(&pNewEntry->onLoadCond); dvmUnlockMutex(&pNewEntry->onLoadLock); return result; } }
哇塞,dvmLoadNativeCode()这个函数还真的是有点复杂,那就挑那些跟我们的JNI比较紧密相关的逻辑来看吧。可以认为这个函数做了下面的这样一些事情:
至此,大体可以结束System.loadLibrary()的执行过程的分析。