前言
红黑树作为一种经典而高级的数据结构,相信已经被不少人实现过,但是因为程序不够完善而无法运行,就是因为程序完全没有注释,初学者根本就看不懂。——这句话相对赞
此份红黑树的C源码最初从linux-lib-rbtree.c而来,后经一网友那谁(http://www.cppblog.com/converse/)用C写了出来。在此,向原作者表示敬意。但原来的程序没有任何一行注释。没有一行注释的程序,令程序的价值大打折扣。
所以,特把这份源代码在VC6.0上,一行一行的完善,一行一行的给它添加注释。至此,红黑树C带注释源码,就摆在了您的眼前,如有不妥、不正之处,还望不吝指正。
一、红黑树C语言源码实现
目录:
一、左旋代码分析
二、右旋
三、红黑树查找结点
四、红黑树的插入
五、红黑树的3种插入情况
六、红黑树的删除
七、红黑树的4种删除情况
八、测试用例
//一、左旋代码分析 /*----------------------------------------------------------- | node right | / / ==> / / | a right node y | / / / / | b y a b //左旋 -----------------------------------------------------------*/ static rb_node_t* rb_rotate_left(rb_node_t* node, rb_node_t* root) { rb_node_t* right = node->right; //指定指针指向 right<--node->right if ((node->right = right->left)) { right->left->parent = node; //好比上面的注释图,node成为b的父母 } right->left = node; //node成为right的左孩子 if ((right->parent = node->parent)) { if (node == node->parent->right) { node->parent->right = right; } else { node->parent->left = right; } } else { root = right; } node->parent = right; //right成为node的父母 return root; } //二、右旋 /*----------------------------------------------------------- | node left | / / / / | left y ==> a node | / / / / | a b b y //右旋与左旋差不多,分析略过 -----------------------------------------------------------*/ static rb_node_t* rb_rotate_right(rb_node_t* node, rb_node_t* root) { rb_node_t* left = node->left; if ((node->left = left->right)) { left->right->parent = node; } left->right = node; if ((left->parent = node->parent)) { if (node == node->parent->right) { node->parent->right = left; } else { node->parent->left = left; } } else { root = left; } node->parent = left; return root; } //三、红黑树查找结点 //---------------------------------------------------- //rb_search_auxiliary:查找 //rb_node_t* rb_search:返回找到的结点 //---------------------------------------------------- static rb_node_t* rb_search_auxiliary(key_t key, rb_node_t* root, rb_node_t** save) { rb_node_t *node = root, *parent = NULL; int ret; while (node) { parent = node; ret = node->key - key; if (0 < ret) { node = node->left; } else if (0 > ret) { node = node->right; } else { return node; } } if (save) { *save = parent; } return NULL; } //返回上述rb_search_auxiliary查找结果 rb_node_t* rb_search(key_t key, rb_node_t* root) { return rb_search_auxiliary(key, root, NULL); } //四、红黑树的插入 //--------------------------------------------------------- //红黑树的插入结点 rb_node_t* rb_insert(key_t key, data_t data, rb_node_t* root) { rb_node_t *parent = NULL, *node; parent = NULL; if ((node = rb_search_auxiliary(key, root, &parent))) //调用rb_search_auxiliary找到插入结 点的地方 { return root; } node = rb_new_node(key, data); //分配结点 node->parent = parent; node->left = node->right = NULL; node->color = RED; if (parent) { if (parent->key > key) { parent->left = node; } else { parent->right = node; } } else { root = node; } return rb_insert_rebalance(node, root); //插入结点后,调用rb_insert_rebalance修复红黑树 的性质 } //五、红黑树的3种插入情况 //接下来,咱们重点分析针对红黑树插入的3种情况,而进行的修复工作。 //-------------------------------------------------------------- //红黑树修复插入的3种情况 //为了在下面的注释中表示方便,也为了让下述代码与我的倆篇文章相对应, //用z表示当前结点,p[z]表示父母、p[p[z]]表示祖父、y表示叔叔。 //-------------------------------------------------------------- static rb_node_t* rb_insert_rebalance(rb_node_t *node, rb_node_t *root) { rb_node_t *parent, *gparent, *uncle, *tmp; //父母p[z]、祖父p[p[z]]、叔叔y、临时结点*tmp while ((parent = node->parent) && parent->color == RED) { //parent 为node的父母,且当父母的颜色为红时 gparent = parent->parent; //gparent为祖父 if (parent == gparent->left) //当祖父的左孩子即为父母时。 //其实上述几行语句,无非就是理顺孩子、父母、祖父的关系。:D。 { uncle = gparent->right; //定义叔叔的概念,叔叔y就是父母的右孩子。 if (uncle && uncle->color == RED) //情况1:z的叔叔y是红色的 { uncle->color = BLACK; //将叔叔结点y着为黑色 parent->color = BLACK; //z的父母p[z]也着为黑色。解决z,p[z]都是红色的问题。 gparent->color = RED; node = gparent; //将祖父当做新增结点z,指针z上移俩层,且着为红色。 //上述情况1中,只考虑了z作为父母的右孩子的情况。 } else //情况2:z的叔叔y是黑色的, { if (parent->right == node) //且z为右孩子 { root = rb_rotate_left(parent, root); //左旋[结点z,与父母结点] tmp = parent; parent = node; node = tmp; //parent与node 互换角色 } //情况3:z的叔叔y是黑色的,此时z成为了左孩子。 //注意,1:情况3是由上述情况2变化而来的。 //......2:z的叔叔总是黑色的,否则就是情况1了。 parent->color = BLACK; //z的父母p[z]着为黑色 gparent->color = RED; //原祖父结点着为红色 root = rb_rotate_right(gparent, root); //右旋[结点z,与祖父结点] } } else { // if (parent == gparent->right) 当祖父的右孩子即为父母时。(解释请看本文评论下第23楼,同时,感谢SupremeHover指正!) uncle = gparent->left; //祖父的左孩子作为叔叔结点。[原理还是与上部分一样的] if (uncle && uncle->color == RED) //情况1:z的叔叔y是红色的 { uncle->color = BLACK; parent->color = BLACK; gparent->color = RED; node = gparent; //同上。 } else //情况2:z的叔叔y是黑色的, { if (parent->left == node) //且z为左孩子 { root = rb_rotate_right(parent, root); //以结点parent、root右旋 tmp = parent; parent = node; node = tmp; //parent与node 互换角色 } //经过情况2的变化,成为了情况3. parent->color = BLACK; gparent->color = RED; root = rb_rotate_left(gparent, root); //以结点gparent和root左旋 } } } root->color = BLACK; //根结点,不论怎样,都得置为黑色。 return root; //返回根结点。 } //六、红黑树的删除 //------------------------------------------------------------ //红黑树的删除结点 rb_node_t* rb_erase(key_t key, rb_node_t *root) { rb_node_t *child, *parent, *old, *left, *node; color_t color; if (!(node = rb_search_auxiliary(key, root, NULL))) //调用rb_search_auxiliary查找要删除的 结点 { printf("key %d is not exist!/n"); return root; } old = node; if (node->left && node->right) { node = node->right; while ((left = node->left) != NULL) { node = left; } child = node->right; parent = node->parent; color = node->color; if (child) { child->parent = parent; } if (parent) { if (parent->left == node) { parent->left = child; } else { parent->right = child; } } else { root = child; } if (node->parent == old) { parent = node; } node->parent = old->parent; node->color = old->color; node->right = old->right; node->left = old->left; if (old->parent) { if (old->parent->left == old) { old->parent->left = node; } else { old->parent->right = node; } } else { root = node; } old->left->parent = node; if (old->right) { old->right->parent = node; } } else { if (!node->left) { child = node->right; } else if (!node->right) { child = node->left; } parent = node->parent; color = node->color; if (child) { child->parent = parent; } if (parent) { if (parent->left == node) { parent->left = child; } else { parent->right = child; } } else { root = child; } } free(old); if (color == BLACK) { root = rb_erase_rebalance(child, parent, root); //调用rb_erase_rebalance来恢复红黑树性 质 } return root; } //七、红黑树的4种删除情况 //---------------------------------------------------------------- //红黑树修复删除的4种情况 //为了表示下述注释的方便,也为了让下述代码与我的倆篇文章相对应, //x表示要删除的结点,*other、w表示兄弟结点, //---------------------------------------------------------------- static rb_node_t* rb_erase_rebalance(rb_node_t *node, rb_node_t *parent, rb_node_t *root) { rb_node_t *other, *o_left, *o_right; //x的兄弟*other,兄弟左孩子*o_left,*o_right while ((!node || node->color == BLACK) && node != root) { if (parent->left == node) { other = parent->right; if (other->color == RED) //情况1:x的兄弟w是红色的 { other->color = BLACK; parent->color = RED; //上俩行,改变颜色,w->黑、p[x]->红。 root = rb_rotate_left(parent, root); //再对p[x]做一次左旋 other = parent->right; //x的新兄弟new w 是旋转之前w的某个孩子。其实就是左旋后 的效果。 } if ((!other->left || other->left->color == BLACK) && (!other->right || other->right->color == BLACK)) //情况2:x的兄弟w是黑色,且w的俩个孩子也 都是黑色的 { //由于w和w的俩个孩子都是黑色的,则在x和w上得去掉一黑色, other->color = RED; //于是,兄弟w变为红色。 node = parent; //p[x]为新结点x parent = node->parent; //x<-p[x] } else //情况3:x的兄弟w是黑色的, { //且,w的左孩子是红色,右孩子为黑色。 if (!other->right || other->right->color == BLACK) { if ((o_left = other->left)) //w和其左孩子left[w],颜色交换。 { o_left->color = BLACK; //w的左孩子变为由黑->红色 } other->color = RED; //w由黑->红 root = rb_rotate_right(other, root); //再对w进行右旋,从而红黑性质恢复。 other = parent->right; //变化后的,父结点的右孩子,作为新的兄弟结点 w。 } //情况4:x的兄弟w是黑色的 other->color = parent->color; //把兄弟节点染成当前节点父节点的颜色。 parent->color = BLACK; //把当前节点父节点染成黑色 if (other->right) //且w的右孩子是红 { other->right->color = BLACK; //兄弟节点w右孩子染成黑色 } root = rb_rotate_left(parent, root); //并再做一次左旋 node = root; //并把x置为根。 break; } } //下述情况与上述情况,原理一致。分析略。 else { other = parent->left; if (other->color == RED) { other->color = BLACK; parent->color = RED; root = rb_rotate_right(parent, root); other = parent->left; } if ((!other->left || other->left->color == BLACK) && (!other->right || other->right->color == BLACK)) { other->color = RED; node = parent; parent = node->parent; } else { if (!other->left || other->left->color == BLACK) { if ((o_right = other->right)) { o_right->color = BLACK; } other->color = RED; root = rb_rotate_left(other, root); other = parent->left; } other->color = parent->color; parent->color = BLACK; if (other->left) { other->left->color = BLACK; } root = rb_rotate_right(parent, root); node = root; break; } } } if (node) { node->color = BLACK; //最后将node[上述步骤置为了根结点],改为黑色。 } return root; //返回root } //八、测试用例 //主函数 int main() { int i, count = 100; key_t key; rb_node_t* root = NULL, *node = NULL; srand(time(NULL)); for (i = 1; i < count; ++i) { key = rand() % count; if ((root = rb_insert(key, i, root))) { printf("[i = %d] insert key %d success!/n", i, key); } else { printf("[i = %d] insert key %d error!/n", i, key); exit(-1); } if ((node = rb_search(key, root))) { printf("[i = %d] search key %d success!/n", i, key); } else { printf("[i = %d] search key %d error!/n", i, key); exit(-1); } if (!(i % 10)) { if ((root = rb_erase(key, root))) { printf("[i = %d] erase key %d success/n", i, key); } else { printf("[i = %d] erase key %d error/n", i, key); } } } return 0; }