Valgrind为一个debugging 和 profiling的工具包,检查内存问题只是其最知名的一个用途。今天介绍一下,valgrind工具包中的cachegrind。关于cachegrind的具体介绍,请参见valgrind的在线文档http://www.valgrind.org/docs/manual/cg-manual.html
下面使用一个古老的cache示例:
#include <stdio.h>
#include <stdlib.h>
#define SIZE 100
int main(int argc, char **argv)
{
int array[SIZE][SIZE] = {0};
int i,j;
#if 1
for (i = 0; i < SIZE; ++i) {
for (j = 0; j < SIZE; ++j) {
array[i][j] = i + j;
}
}
#else
for (j = 0; j < SIZE; ++j) {
for (i = 0; i < SIZE; ++i) {
array[i][j] = i + j;
}
}
#endif
return 0;
}
这个示例代码从很久就开始用于说明利用局部性来增加cache的命中率。传统的是第一个for循环的性能要优于第二个循环。
我使用条件编译,在没有打开任何优化开关的条件下,第一种情况生成文件为test1,第二种情况生成文件为test2。
下面是输出
[fgao@fgao-vm-fc13 test]$ valgrind --tool=cachegrind ./test1
==2079== Cachegrind, a cache and branch-prediction profiler
==2079== Copyright (C) 2002-2009, and GNU GPL'd, by Nicholas Nethercote et al.
==2079== Using Valgrind-3.5.0 and LibVEX; rerun with -h for copyright info
==2079== Command: ./test1
==2079==
==2079==
==2079== I refs: 219,767
==2079== I1 misses: 614
==2079== L2i misses: 608
==2079== I1 miss rate: 0.27%
==2079== L2i miss rate: 0.27%
==2079==
==2079== D refs: 124,402 (95,613 rd + 28,789 wr)
==2079== D1 misses: 2,041 ( 621 rd + 1,420 wr)
==2079== L2d misses: 1,292 ( 537 rd + 755 wr)
==2079== D1 miss rate: 1.6% ( 0.6% + 4.9% )
==2079== L2d miss rate: 1.0% ( 0.5% + 2.6% )
==2079==
==2079== L2 refs: 2,655 ( 1,235 rd + 1,420 wr)
==2079== L2 misses: 1,900 ( 1,145 rd + 755 wr)
==2079== L2 miss rate: 0.5% ( 0.3% + 2.6% )
[fgao@fgao-vm-fc13 test]$ valgrind --tool=cachegrind ./test2
==2080== Cachegrind, a cache and branch-prediction profiler
==2080== Copyright (C) 2002-2009, and GNU GPL'd, by Nicholas Nethercote et al.
==2080== Using Valgrind-3.5.0 and LibVEX; rerun with -h for copyright info
==2080== Command: ./test2
==2080==
==2080==
==2080== I refs: 219,767
==2080== I1 misses: 614
==2080== L2i misses: 608
==2080== I1 miss rate: 0.27%
==2080== L2i miss rate: 0.27%
==2080==
==2080== D refs: 124,402 (95,613 rd + 28,789 wr)
==2080== D1 misses: 1,788 ( 621 rd + 1,167 wr)
==2080== L2d misses: 1,292 ( 537 rd + 755 wr)
==2080== D1 miss rate: 1.4% ( 0.6% + 4.0% )
==2080== L2d miss rate: 1.0% ( 0.5% + 2.6% )
==2080==
==2080== L2 refs: 2,402 ( 1,235 rd + 1,167 wr)
==2080== L2 misses: 1,900 ( 1,145 rd + 755 wr)
==2080== L2 miss rate: 0.5% ( 0.3% + 2.6% )
结果有点出人意料,第一种情况在D1的命中率反而低于第二种情况。
这个结果其实是应该可以理解的。
1. 现在的CPU的cache是以line为单位的。这样,当数组的size不大时,第二种情况的循环,虽然没有使用局部性原则,但是并不会因此降低cache的命中率,并且可能可以迅速的将数据填到cache中
2. 现在的CPU的cache空间较大。这样,当数组的size不大时,即使没有使用局部性原则,也不会导致cache的频繁更新。
由于我对cache的理解,也比较粗浅,所以不能明确的指出这个结果的根本原因。根据上面的两个条件,基本上也可以理解为什么第二种情况更快。
为了使cachegrind的结果与传统的一样,我们就需要破坏上面两个条件。那么,现在将SIZE从100增大的1000。再次看一下输出结果:
[fgao@fgao-vm-fc13 test]$ valgrind --tool=cachegrind ./test1
==2094== Cachegrind, a cache and branch-prediction profiler
==2094== Copyright (C) 2002-2009, and GNU GPL'd, by Nicholas Nethercote et al.
==2094== Using Valgrind-3.5.0 and LibVEX; rerun with -h for copyright info
==2094== Command: ./test1
==2094==
==2094==
==2094== I refs: 11,519,463
==2094== I1 misses: 617
==2094== L2i misses: 611
==2094== I1 miss rate: 0.00%
==2094== L2i miss rate: 0.00%
==2094==
==2094== D refs: 7,305,498 (6,038,310 rd + 1,267,188 wr)
==2094== D1 misses: 125,791 ( 621 rd + 125,170 wr)
==2094== L2d misses: 125,763 ( 595 rd + 125,168 wr)
==2094== D1 miss rate: 1.7% ( 0.0% + 9.8% )
==2094== L2d miss rate: 1.7% ( 0.0% + 9.8% )
==2094==
==2094== L2 refs: 126,408 ( 1,238 rd + 125,170 wr)
==2094== L2 misses: 126,374 ( 1,206 rd + 125,168 wr)
==2094== L2 miss rate: 0.6% ( 0.0% + 9.8% )
[fgao@fgao-vm-fc13 test]$ valgrind --tool=cachegrind ./test2
==2095== Cachegrind, a cache and branch-prediction profiler
==2095== Copyright (C) 2002-2009, and GNU GPL'd, by Nicholas Nethercote et al.
==2095== Using Valgrind-3.5.0 and LibVEX; rerun with -h for copyright info
==2095== Command: ./test2
==2095==
==2095==
==2095== I refs: 11,519,463
==2095== I1 misses: 617
==2095== L2i misses: 611
==2095== I1 miss rate: 0.00%
==2095== L2i miss rate: 0.00%
==2095==
==2095== D refs: 7,305,498 (6,038,310 rd + 1,267,188 wr)
==2095== D1 misses: 1,063,300 ( 621 rd + 1,062,679 wr)
==2095== L2d misses: 116,261 ( 595 rd + 115,666 wr)
==2095== D1 miss rate: 14.5% ( 0.0% + 83.8% )
==2095== L2d miss rate: 1.5% ( 0.0% + 9.1% )
==2095==
==2095== L2 refs: 1,063,917 ( 1,238 rd + 1,062,679 wr)
==2095== L2 misses: 116,872 ( 1,206 rd + 115,666 wr)
==2095== L2 miss rate: 0.6% ( 0.0% + 9.1% )
对比红色的两行,第一种情况的miss率为1.7%,而第二种情况的miss率高达14.5%。现在符合了传统。
总结一下:
1. 我们可以使用cachegrind来检查cache的命中率,提高程序性能;
2. 尽信书不如无书。书中的一些结果面对现在的环境,很可能是错误的。毕竟IT技术更新太快。还是自己动手实践一下更好!