简单的日志统计是不需要使用重量级的Hadoop,我用python实现了日志的统计。原理是用fabric登录到远程linux,组合使用grep、uniq、sort、awk对日志进行操作,可以根据正则表达式指定规则抽取符合规则的日志,做查询,计数,分类统计。
注意:要安装fabric库
主文件:LogQuery.py
#encoding=utf-8 from fabric.api import run,env,local,cd from fabric.tasks import execute,abort from fabric.contrib.console import confirm import logging logging.basicConfig(format='[%(levelname)s]: %(message)s', level=logging.DEBUG) logger = logging.getLogger(__name__) logging.getLogger('paramiko.transport').setLevel(logging.ERROR) logger.setLevel(logging.DEBUG) EXECUTE_RESULT = {} def hosts(hostarr): ''' set hosts hostarr:[(hostname,password),(hostname,password)...] ''' env.hosts = [x[0] for x in hostarr] env.passwords = dict(x for x in hostarr) def query(expression,hostname,logfile,unique=True,sort=None,output=None,pattern=None,path=None): ''' expression: regex rule hostname: hostname as specified hosts() logfile: log file name, wildcard supported, eg:*.log unique: whether result is unique sort: 1(ASC) or -1(DESC) ,default None output:None or file name, default None imply print stream pattern: group pattern , default None imply '1' path: cd to path before execution ''' if not path: path = r'.' cmd_str = generate_cmd(expression,logfile,unique,sort,output,pattern) execute(executor,hostname,cmd_str,path,host=hostname) result = EXECUTE_RESULT[hostname] return result def aggregate(expression,hostname,logfile,output=None,pattern=None,path=None): ''' expression: regex rule hostname: hostname as specified hosts() logfile: log file name, wildcard supported, eg:*.log output:None or file name, default None imply print stream pattern: group pattern , default None imply '1' path: cd to path before execution ''' if not path: path = r'.' cmd_str = generate_cmd(expression,logfile,False,None,output,pattern,True,True) execute(executor,hostname,cmd_str,path,host=hostname) result = EXECUTE_RESULT[hostname] return result def count(expression,hostname,logfile,unique=True,sort=None,output=None,pattern=None,path=None): ''' expression: regex rule hostname: hostname as specified hosts() logfile: log file name, wildcard supported, eg:*.log unique: whether result is unique sort: 1(ASC) or -1(DESC) ,default None output:None or file name, default None imply print stream pattern: group pattern , default None imply '1' path: cd to path before execution ''' if not path: path = r'.' cmd_str = generate_cmd(expression,logfile,unique,sort,output,pattern,True) execute(executor,hostname,cmd_str,path,host=hostname) result = EXECUTE_RESULT[hostname] if result: result = int(result[0]) return result def executor(hostname,cmd_str,path=None): ''' executor , called by execute ''' if not path: path = r'.' with cd(path): res = run(cmd_str,quiet=True) logger.debug('Command: %s:%s > %s'%(hostname,path,cmd_str)) logger.debug('Command Execute Successful:%s, Failure:%s'%(res.succeeded,res.failed)) EXECUTE_RESULT[hostname] = res.splitlines() def generate_cmd(expression,logfile,unique=True,sort=None,output=None,pattern=None,count=False,aggregate=False): ''' generate command ''' if not pattern: pattern = r'\1' if aggregate: aggregate = '''| awk '{a[$1]++}END{for (j in a) print j","a[j]}' ''' unique = False sort = False count = False else: aggregate = '' if not unique: unique = '' else: unique = '| uniq' if sort: if sort==1: sort = '| sort' elif sort==-1: sort = '| sort -r' else: sort = '' else: sort = '' if count: count = '| wc -l' else: count = '' if output: output = '>%s'%output else: output = '' cmd_str = '''cat %s | grep "%s" | sed 's/%s/%s/g' %s %s %s %s %s'''%(logfile,expression,expression,pattern,unique,sort,count,output,aggregate) return cmd_str
假设你的日志是这样的:
spider.A crawled http://www.163.com/abc.html spider.A crawled http://www.yahoo.com/xyz.html spider.B crawled http://www.baidu.com/mnq.html other log no crawing infomation involved spider.C crawled http://www.sina.com.cn/yyy.html
使用案例:test.py
#encoding=utf-8 import LogQuery #定义多个主机,用户名@主机,登录密码 myhosts = [('[email protected]','123'),('[email protected]','123'),('[email protected]','123')] LogQuery.hosts(myhosts) ''' 案例1: 查询有哪些域名被抓取过,使用query方法,会返回所有符合规则的数据 预期返回: www.163.com www.yahoo.com ... ''' res = LogQuery.query('\(.*crawled http:\/\/\)\([^\/]*\)\(\/.*\)',myhosts[0][0],'gcrawler.*.log',unique=True,sort=None,output=None,pattern=r'\2',path='/home/workspace/Case/trunk/src/gcrawler/log') ''' 上一行代码解读: 第一个参数指定了表示抓取的日志正则表达式,并且将其分组(为了提取域名),分组的括号用\(,\)表示,第二组是域名的提取。 第二个参数指定了要查询那一台主机上的日志 第三个参数指定了要分析的日志文件名,*表示任何字符 第四个参数unique,是否对返回的条目进行排重,例如:日志中发现多个www.163.com,只算一个 第五个参数sort,是否需要对抽取的条目进行排序,1:正序、-1:倒序,这里为None,即不需要排序 第六个参数output,可以指定运行结果输出到某个文件,在这里不需要输出,为None 第七个参数pattern,是指从正则表达式中抽取哪个分组,默认是第一组,这里用r'\2'指定第二组 第八个参数path指定了日志在操作系统上所在的目录 以下的count、aggregate方法使用的参数和query都是一样的意义 ''' ''' 案例2: 统计被抓取过的域名有几个,使用count方法,会返回所有符合规则的统计总数 预期返回:4 ... ''' res = LogQuery.count('\(.*crawled http:\/\/\)\([^\/]*\)\(\/.*\)',myhosts[1][0],'gcrawler.*.log',unique=True,sort=None,output=None,pattern=r'\2',path='/home/workspace/Case/trunk/src/gcrawler/log') ''' 案例3: 分别统计每个域名被抓取的数量 返回的结果: 域名1,统计数字 域名2,统计数字 ... ''' res = LogQuery.aggregate('\(.*crawled http:\/\/\)\([^\/]*\)\(\/.*\)',myhosts[2][0],'gcrawler.*.log',output=None,pattern=r'\2',path='/home/workspace/Case/trunk/src/gcrawler/log')#这里是分类统计就没必要指定unique和sort了。 #打印分组统计的情况 for i in res: domain,count = i.split(',') total += int(count) print domain,'=>',count