- 利用jieba库和wordcloud库绘制词云图像
baichui
python学习python
目录jieba库的使用利用jieba库获取红楼梦中人物名字的出现频次wordcloud库的使用根据红楼梦中人物出现频次,制作词云图jieba库的使用jieba库是优秀的中文分词工具,能对文本进行分词处理常用函数:lcut与cutlcut函数接受一个中文文本字符串,对该文本进行分词处理,返回一个分词列表(推荐使用)而jieba.cut生成的是一个生成器,generator,可以通过for循环来取里面
- 基于Python爬虫的豆瓣电影影评数据可视化分析
wp_tao
Python副业接单实战项目python爬虫信息可视化
文章目录前言一、数据抓取二、数据可视化1.绘制词云图2.读入数据总结前言本文以电影《你好,李焕英》在豆瓣上的影评数据为爬取和分析的目标,利用python爬虫技术对影评数据进行了爬取,使用pandas库进行了数据清洗,使用jieba库进行分词,使用collections库进行词频统计,使用wordcloud库绘制词云图,使用matplotlib库绘制了评论人所在城市占比饼状图,并使用matplotl
- 从零开始构建一个大语言模型-第二章第一节
释迦呼呼
从零开始构建一个大语言模型语言模型人工智能自然语言处理
#第二章目录**2.1理解词嵌入**2.2文本分词2.3将词元转换为词元ID2.4添加特殊上下文词元2.5字节对编码2.6使用滑动窗口进行数据采样2.7创建词元嵌入2.8编码词位置#本章涵盖为大型语言模型训练准备文本。将文本拆分为单词和子词词元。字节对编码:一种更先进的文本分词方法。用滑动窗口法采样训练样本。将词元转换为输入大型语言模型的向量。到目前为止,我们已经介绍了大型语言模型(LLMs)的总
- es java match_ElasticSearch查询 第四篇:匹配查询(Match)
哈哈哈哈哈哈哈哈鸽
esjavamatch
《ElasticSearch查询》目录导航:匹配(Match)查询属于全文(Fulltext)查询,不同于词条查询,ElasticSearch引擎在处理全文搜索时,首先分析(analyze)查询字符串,然后根据分词构建查询,最终返回查询结果。匹配查询共有三种类型,分别是布尔(boolean)、短语(phrase)和短语前缀(phrase_prefix),默认的匹配查询是布尔类型,这意味着,Elas
- CaigouSearch 基于ngram分词的轻量PHP全文检索插件
php全文检索模糊搜索
简单易用最关键,菜狗搜索:https://github.com/rock365/caigou这是一个基于ngram分词的PHP模糊搜索插件,且完全免费,对博客等中小型网站来说,绰绰有余,因为它是用PHP开发的,所以能跟PHP项目完美融合。如果你对elasticsearch的语法比较了解,那么你很快就会上手,不了解也没关系,照着文档复制填写就行了,没有任何难度。注意:id字段必须为整型递增安装导入在
- 基于网络爬虫技术的网络新闻分析
众拾达人
JavaWeb爬虫爬虫
文末附有完整项目代码在信息爆炸的时代,如何从海量的网络新闻中挖掘出有价值的信息呢?今天就来给大家分享一下基于网络爬虫技术的网络新闻分析的实现过程。首先,我们来了解一下系统的需求。我们的目标是能够实时抓取凤凰网新闻、网易新闻、搜狐新闻等网站的新闻数据,正确抽取正文并获取点击量,每日定时抓取。然后对抓取回来的新闻进行中文分词,利用分词结果计算新闻相似度,将相似新闻合并并展示相似新闻的用户点击趋势。接下
- 如何让 localStorage 数据实现实时响应
重大事项:重大事项提前通知!快来围观,不容错过!极限科技一直致力于为开发者和企业提供优质的开源工具,提升整个技术生态的活力。除了维护国内最流行的分词器analysis-ik和analysis-pinyin,也在不断推动更多高质量开源产品的诞生。在极限科技成立三周年之际,公司宣布以下产品和工具已全面开源:INFINIFrameworkINFINIGatewayINFINIConsoleINFINIA
- 英语语法学习:非谓语动词&过去分词的形式练习!
树先生本人
一、过去分词的变化规则1.规则变化(规则动词的变化规则)规则动词的过去分词与过去式变化规则一致:(1)一般而言,在动词原形后直接加-ed.(2)以字母e结尾的动词,直接加-d.(3)以辅音字母加-y结尾的动词,变y为i,再加-ed.(4)以重读闭音节(辅音+元音+辅音)形式结尾的动词,双写末尾的辅音字母,再加-ed.2.不规则变化(不规则动词的变化规则)过去分词的不规则变化,可以和过去式的不规则变
- NLP_jieba中文分词的常用模块
Hiweir ·
NLP_jieba的使用自然语言处理中文分词人工智能nlp
1.jieba分词模式(1)精确模式:把句子最精确的切分开,比较适合文本分析.默认精确模式.(2)全模式:把句子中所有可能成词的词都扫描出来,cut_all=True,缺点:速度快,不能解决歧义(3)paddle:利用百度的paddlepaddle深度学习框架.简单来说就是使用百度提供的分词模型.use_paddle=True.(4)搜索引擎模式:在精确模式的基础上,对长词再进行切分,提高召回率,
- docker安装与使用
小鱼做了就会
开发框架及各种插件dockerjavamavenubuntulinux
docker安装与使用一、docker安装二、容器三、镜像五、Docker部署ES5.1部署ES5.2配置跨域5.3重启容器5.4Docker部署ES-IK分词器5.5Docker部署ElasticSearch-Head5.6Docker快速安装kibana一、docker安装sudowget-qO-https://get.docker.com/|bash二、容器容器是由镜像实例化而来,这和我们学
- Python的情感词典情感分析和情绪计算
yava_free
python大数据人工智能
一.大连理工中文情感词典情感分析(SentimentAnalysis)和情绪分类(EmotionClassification)都是非常重要的文本挖掘手段。情感分析的基本流程如下图所示,通常包括:自定义爬虫抓取文本信息;使用Jieba工具进行中文分词、词性标注;定义情感词典提取每行文本的情感词;通过情感词构建情感矩阵,并计算情感分数;结果评估,包括将情感分数置于0.5到-0.5之间,并可视化显示。目
- 使用Python和Jieba库进行中文情感分析:从文本预处理到模型训练的完整指南
快撑死的鱼
Python算法精解python人工智能开发语言
使用Python和Jieba库进行中文情感分析:从文本预处理到模型训练的完整指南情感分析(SentimentAnalysis)是自然语言处理(NLP)领域中的一个重要分支,旨在从文本中识别出情绪、态度或意见等主观信息。在中文文本处理中,由于语言特性不同于英语,如何高效、准确地分词和提取关键词成为情感分析的关键步骤之一。在这篇文章中,我们将深入探讨如何使用Python和Jieba库进行中文情感分析,
- python连接es_Elasticsearch --- 3. ik中文分词器, python操作es
weixin_39962285
python连接es
一.IK中文分词器1.下载安装2.测试#显示结果{"tokens":[{"token":"上海","start_offset":0,"end_offset":2,"type":"CN_WORD","position":0},{"token":"自来水","start_offset":2,"end_offset":5,"type":"CN_WORD","position":1},{"token":"
- 使用Python的Elasticsearch客户端 elasticsearch-py 来完成删除现有索引、重新创建索引并测试分词的示例代码
Roc-xb
Pythonpythonelasticsearch
以下是一个使用Python的Elasticsearch客户端elasticsearch-py来完成删除现有索引、重新创建索引并测试分词的示例代码一、安装依赖pipinstallelasticsearch二、运行效果三、程序代码fromelasticsearchimportElasticsearch,NotFoundError#连接到Elasticsearches=Elasticsearch(
- JAVA使用es不分词_谈谈 Elasticsearch 分词和自定义分词
weixin_39966376
JAVA使用es不分词
初次接触Elasticsearch的同学经常会遇到分词相关的难题,比如如下这些场景:1、为什么命名有包含搜索关键词的文档,但结果里面就没有相关文档呢?2、我存进去的文档到底被分成哪些词(term)了?3、我得自定义分词规则,但感觉好麻烦呢,无从下手如果你遇到过类似的问题,希望本文可以解决你的疑惑。一、上手让我们从一个实例出发,如下创建一个文档:PUTtest/doc/1{"msg":"Eating
- es安装ik分词器
abments
ESelasticsearchjenkins大数据
下载分词器首先确定es对应的版本(假设版本是7.10.0)根据版本下载指定的分词器开始安装在线安装./bin/elasticsearch-plugininstallhttps://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.10.0/elasticsearch-analysis-ik-7.10.0.zip离线安装-
- 三国演义python分析系统_Python之三国演义(上)
weixin_40002692
三国演义python分析系统
一、设计实现详细说明1.1任务详细描述以中国四大名著之一——《三国演义》为蓝本,结合python数据分析知识进行本次的文本分析。《三国演义》全书共120回。本次的分析主要基于统计分析、文本挖掘等知识。1.2设计思路详细描述数据准备、数据预处理、分词等全书各个章节的字数、词数、段落等相关方面的关系整体词频和词云的展示全书各个章节进行聚类分析并可视化,主要进行了根据IF-IDF的系统聚类和根据词频的L
- 重生之我们在ES顶端相遇第11 章 - 深入自定义语言分词器
不能放弃治疗
Elasticsearchelasticsearch
文章目录0.前言1.英语分词器2.阿拉伯语分词器3.结语0.前言国内企业出海是大势所趋,那么基于不同的语种进行分词就显得尤为重要,因为这会让用户的搜索体验更棒!国内出海企业,会更偏向于选择欧美、中东这2个地区。因此本文章也重点介绍英语、阿拉伯语的分词。在ES中内置的分词器中,有一个叫Languageanalyzers,我们可以根据该分词器,自定义出符合业务需求的特定语言分词器。1.英语分词器英语分
- NLP面试题(9月4日笔记)
好好学习Py
自然语言处理自然语言处理笔记人工智能
常见的分词方法分词是将连续的子序列按照一定的规则进行重新组合形成词序列的过程,是NLP领域内最基础的内容。常见的分词方法有jieba分词,jieba分词支持多种分词模模式:精确模式,全模式,搜索引擎模式。1)精确模式:将句子最精确的进行切分,适合文本分析,在日常工作中最为常用;2)全模式:将句子中所有可以成词的词语都扫描出来,速度非常快,但不能消除歧义。3)搜索引擎模式:在精确模式的基础上,对长词
- 小学英语初级高频词汇学习- be
英语小天地nice
1)be+现在分词,构成进行时态,例如:Theyarehavingameeting.他们正在开会.Englishisbecomingmoreandmoreimportant.英语现在越来越重要.2)be+过去分词,构成被动语态,例如:ThewindowwasbrokenbyTom..窗户是汤姆打碎的.Englishistaughtthroughouttheworld.世界各地都教英语.3)be+动
- 微软开源 Phi-3.5 视觉模型
三花AI
三花AImicrosoft人工智能深度学习
微软刚刚发布了Phi3.5系列模型,一个小型模型("Mini")、一个混合模型("MoE")和一个视觉模型。下面是关键总结:Phi3.5Mini:3.8B参数,性能超过Llama3.1(8B)和Mistral7B,接近MistralNeMo12B。支持多种语言,使用了包含32,000个词汇的分词器。512个H100GPU,3.4万亿个tokens训练了10天。Phi3.5MoE:16x3.8B参数
- 好用的文本内容抽取关键词API接口调用示例
天聚数行
天行数据天行数据API接口tianapipython
用户输入的内容通常是一个不那么简洁的长尾词,通过抽取关键词接口就能快速抽取其中的核心词。该接口支持指定抽取数量和词性,其中num参数为可选,默认返回10个词语,999为不限数量。当指定wordtag参数为1时,返回一个包含词性的列表,例如把一大段文本中的人名或者把一篇文章里提到的地名单独提取出来。词性代码释义请参考中文智能分词接口词性代码释义。接口信息抽取一段文本信息中的核心关键词接口地址:htt
- 搜索引擎设计:如何避免大海捞针般的信息搜索
CopyLower
架构Java学习搜索引擎
搜索引擎设计:如何避免大海捞针般的信息搜索随着互联网的发展,信息的数量呈爆炸式增长。如何在海量信息中快速、准确地找到所需信息,成为了搜索引擎设计中的核心问题。本文将详细探讨搜索引擎的设计原理和技术,从信息获取、索引建立、查询处理、结果排序到性能优化,全面解析如何避免大海捞针般的信息搜索。目录引言信息获取网页抓取数据清洗索引建立倒排索引正排索引查询处理查询解析词法分析与分词查询扩展结果排序相关性评分
- fastText 情感分类
dreampai
情感分类任务就是看一段文本,然后分辨这个人是否喜欢他们在讨论的这个东西。情感分类一个最大的挑战就是可能标记的训练集没有那么多,但是有了词嵌入,即使只有中等大小的标记的训练集,你也能构建一个不错的情感分类器image.pngimage.png假设有一个句子:“这个衣服质量不错”通过分词、去除停用词等预处理操作,得到“衣服/质量/不错”获取“衣服”、“质量”、“不错”的对应词向量(可以通过TF-IDF
- 默默背单词-231
ss的专属赫兹
1.stinky:[ˈstɪŋki]adj.发恶臭的n.全景雷达;环视雷达站stink:[stɪŋk]v.发恶臭;(非正式)讨厌透顶n.恶臭;(非正式)大吵大闹adj.臭气熏天的;讨厌的;腐败的过去式stank或stunk过去分词stunk2.gamey:adj.味道强的;勇敢的;多猎物的3.funky:[ˈfʌŋki]adj.时髦的;畏缩的;恶臭的funk:[fʌŋk]n.恐惧;怯懦;恐怖;臭味
- python 绘制词云图(自定义png形状、指定字体、颜色)最全!!!
早八起得来
pythonpython开发语言中文分词
前言本文为分总结构,有特定需求的可以查阅前部分分结构的对应板块,最后的总结不懂的可以在分板块查阅解释。分板块分别有引用的库、阅读文本、分词并设置停用词、设置png掩膜、字体设置、生成词云图,感谢您点开这篇分享,祝顺利。目录前言一、引用的库二、阅读文本(让python阅读)三、分词并设置停用词四、设置png掩膜五、字体设置六、生成词云图总结生成示例一、引用的库fromwordcloudimportW
- Elasticsearch检索原理
知知之之
Elasticsearchelasticsearch大数据搜索引擎
Elasticsearch的检索原理主要基于其内部使用的倒排索引结构,以及诸如BM25等相关性评分算法。查询解析当用户提交查询时,Elasticsearch接收和解析该请求,包括确定查询类型(如Match、Bool、Term等)和相关字段。解析过程涉及以下步骤:查询解析:Elasticsearch会对查询进行语法和语义分析。分词处理:对查询中的文本进行分词处理,将其转换为词项,以便于与倒排索引对应
- 自然语言处理系列八》中文分词》规则分词》正向最大匹配法
陈敬雷-充电了么-CEO兼CTO
算法人工智能大数据算法人工智能编程语言java自然语言处理
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】文章目录自然语言处理系列八规则分词正向最大匹配法总结自然语言处理系列八规则分词规则分词是基于字典、词库匹配的分词方法(机械分词法),其实现的主要思想是:切分语句时,将语句特定长的字符串与字典进行匹配,匹配成功就进行切分。按照匹配的方式可分为:正向最
- LSTM与文本生成
Jiang_Immortals
人工智能lstm人工智能rnn
当使用Python和Keras构建LSTM模型时,可以按照以下步骤进行简单的文本生成:准备数据集:首先,将文本数据集进行预处理,例如分词、去除标点符号、将文本转换为小写等。创建一个词汇表,将每个唯一的单词映射到一个整数值,以便进行向量化。将文本序列划分为输入序列和目标序列。例如,对于句子“IloveAI”,输入序列是“Ilove”,目标序列是“AI”。构建LSTM模型:导入必要的库,如Keras和
- 分布式搜索引擎Elasticsearch——基础
敲代码的旺财
架构进阶elasticsearchjava搜索引擎ES-head
文章目录一、Lucene与Solr与Elasticsearch二、ES核心术语三、ES核心概念四、倒排索引五、ES的安装(centos7)1、下载地址(这里安装linux版本)2、解压压缩包3、修改配置文件(1)修改核心配置文件(2)修改JVM配置文件4、启动ES(1)添加系统用户并授权(2)ES启动(3)修改配置文件(4)再次启动ES六、安装ES-head插件(可视化管理插件)1、使用谷歌市场安
- Java实现的基于模板的网页结构化信息精准抽取组件:HtmlExtractor
yangshangchuan
信息抽取HtmlExtractor精准抽取信息采集
HtmlExtractor是一个Java实现的基于模板的网页结构化信息精准抽取组件,本身并不包含爬虫功能,但可被爬虫或其他程序调用以便更精准地对网页结构化信息进行抽取。
HtmlExtractor是为大规模分布式环境设计的,采用主从架构,主节点负责维护抽取规则,从节点向主节点请求抽取规则,当抽取规则发生变化,主节点主动通知从节点,从而能实现抽取规则变化之后的实时动态生效。
如
- java编程思想 -- 多态
百合不是茶
java多态详解
一: 向上转型和向下转型
面向对象中的转型只会发生在有继承关系的子类和父类中(接口的实现也包括在这里)。父类:人 子类:男人向上转型: Person p = new Man() ; //向上转型不需要强制类型转化向下转型: Man man =
- [自动数据处理]稳扎稳打,逐步形成自有ADP系统体系
comsci
dp
对于国内的IT行业来讲,虽然我们已经有了"两弹一星",在局部领域形成了自己独有的技术特征,并初步摆脱了国外的控制...但是前面的路还很长....
首先是我们的自动数据处理系统还无法处理很多高级工程...中等规模的拓扑分析系统也没有完成,更加复杂的
- storm 自定义 日志文件
商人shang
stormclusterlogback
Storm中的日志级级别默认为INFO,并且,日志文件是根据worker号来进行区分的,这样,同一个log文件中的信息不一定是一个业务的,这样就会有以下两个需求出现:
1. 想要进行一些调试信息的输出
2. 调试信息或者业务日志信息想要输出到一些固定的文件中
不要怕,不要烦恼,其实Storm已经提供了这样的支持,可以通过自定义logback 下的 cluster.xml 来输
- Extjs3 SpringMVC使用 @RequestBody 标签问题记录
21jhf
springMVC使用 @RequestBody(required = false) UserVO userInfo
传递json对象数据,往往会出现http 415,400,500等错误,总结一下需要使用ajax提交json数据才行,ajax提交使用proxy,参数为jsonData,不能为params;另外,需要设置Content-type属性为json,代码如下:
(由于使用了父类aaa
- 一些排错方法
文强chu
方法
1、java.lang.IllegalStateException: Class invariant violation
at org.apache.log4j.LogManager.getLoggerRepository(LogManager.java:199)at org.apache.log4j.LogManager.getLogger(LogManager.java:228)
at o
- Swing中文件恢复我觉得很难
小桔子
swing
我那个草了!老大怎么回事,怎么做项目评估的?只会说相信你可以做的,试一下,有的是时间!
用java开发一个图文处理工具,类似word,任意位置插入、拖动、删除图片以及文本等。文本框、流程图等,数据保存数据库,其余可保存pdf格式。ok,姐姐千辛万苦,
- php 文件操作
aichenglong
PHP读取文件写入文件
1 写入文件
@$fp=fopen("$DOCUMENT_ROOT/order.txt", "ab");
if(!$fp){
echo "open file error" ;
exit;
}
$outputstring="date:"." \t tire:".$tire."
- MySQL的btree索引和hash索引的区别
AILIKES
数据结构mysql算法
Hash 索引结构的特殊性,其 检索效率非常高,索引的检索可以一次定位,不像B-Tree 索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问,所以 Hash 索引的查询效率要远高于 B-Tree 索引。
可能很多人又有疑问了,既然 Hash 索引的效率要比 B-Tree 高很多,为什么大家不都用 Hash 索引而还要使用 B-Tree 索引呢
- JAVA的抽象--- 接口 --实现
百合不是茶
抽象 接口 实现接口
//抽象 类 ,方法
//定义一个公共抽象的类 ,并在类中定义一个抽象的方法体
抽象的定义使用abstract
abstract class A 定义一个抽象类 例如:
//定义一个基类
public abstract class A{
//抽象类不能用来实例化,只能用来继承
//
- JS变量作用域实例
bijian1013
作用域
<script>
var scope='hello';
function a(){
console.log(scope); //undefined
var scope='world';
console.log(scope); //world
console.log(b);
- TDD实践(二)
bijian1013
javaTDD
实践题目:分解质因数
Step1:
单元测试:
package com.bijian.study.factor.test;
import java.util.Arrays;
import junit.framework.Assert;
import org.junit.Before;
import org.junit.Test;
import com.bijian.
- [MongoDB学习笔记一]MongoDB主从复制
bit1129
mongodb
MongoDB称为分布式数据库,主要原因是1.基于副本集的数据备份, 2.基于切片的数据扩容。副本集解决数据的读写性能问题,切片解决了MongoDB的数据扩容问题。
事实上,MongoDB提供了主从复制和副本复制两种备份方式,在MongoDB的主从复制和副本复制集群环境中,只有一台作为主服务器,另外一台或者多台服务器作为从服务器。 本文介绍MongoDB的主从复制模式,需要指明
- 【HBase五】Java API操作HBase
bit1129
hbase
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.ha
- python调用zabbix api接口实时展示数据
ronin47
zabbix api接口来进行展示。经过思考之后,计划获取如下内容: 1、 获得认证密钥 2、 获取zabbix所有的主机组 3、 获取单个组下的所有主机 4、 获取某个主机下的所有监控项  
- jsp取得绝对路径
byalias
绝对路径
在JavaWeb开发中,常使用绝对路径的方式来引入JavaScript和CSS文件,这样可以避免因为目录变动导致引入文件找不到的情况,常用的做法如下:
一、使用${pageContext.request.contextPath}
代码” ${pageContext.request.contextPath}”的作用是取出部署的应用程序名,这样不管如何部署,所用路径都是正确的。
- Java定时任务调度:用ExecutorService取代Timer
bylijinnan
java
《Java并发编程实战》一书提到的用ExecutorService取代Java Timer有几个理由,我认为其中最重要的理由是:
如果TimerTask抛出未检查的异常,Timer将会产生无法预料的行为。Timer线程并不捕获异常,所以 TimerTask抛出的未检查的异常会终止timer线程。这种情况下,Timer也不会再重新恢复线程的执行了;它错误的认为整个Timer都被取消了。此时,已经被
- SQL 优化原则
chicony
sql
一、问题的提出
在应用系统开发初期,由于开发数据库数据比较少,对于查询SQL语句,复杂视图的的编写等体会不出SQL语句各种写法的性能优劣,但是如果将应用系统提交实际应用后,随着数据库中数据的增加,系统的响应速度就成为目前系统需要解决的最主要的问题之一。系统优化中一个很重要的方面就是SQL语句的优化。对于海量数据,劣质SQL语句和优质SQL语句之间的速度差别可以达到上百倍,可见对于一个系统
- java 线程弹球小游戏
CrazyMizzz
java游戏
最近java学到线程,于是做了一个线程弹球的小游戏,不过还没完善
这里是提纲
1.线程弹球游戏实现
1.实现界面需要使用哪些API类
JFrame
JPanel
JButton
FlowLayout
Graphics2D
Thread
Color
ActionListener
ActionEvent
MouseListener
Mouse
- hadoop jps出现process information unavailable提示解决办法
daizj
hadoopjps
hadoop jps出现process information unavailable提示解决办法
jps时出现如下信息:
3019 -- process information unavailable3053 -- process information unavailable2985 -- process information unavailable2917 --
- PHP图片水印缩放类实现
dcj3sjt126com
PHP
<?php
class Image{
private $path;
function __construct($path='./'){
$this->path=rtrim($path,'/').'/';
}
//水印函数,参数:背景图,水印图,位置,前缀,TMD透明度
public function water($b,$l,$pos
- IOS控件学习:UILabel常用属性与用法
dcj3sjt126com
iosUILabel
参考网站:
http://shijue.me/show_text/521c396a8ddf876566000007
http://www.tuicool.com/articles/zquENb
http://blog.csdn.net/a451493485/article/details/9454695
http://wiki.eoe.cn/page/iOS_pptl_artile_281
- 完全手动建立maven骨架
eksliang
javaeclipseWeb
建一个 JAVA 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=App
[-Dversion=0.0.1-SNAPSHOT]
[-Dpackaging=jar]
建一个 web 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=web-a
- 配置清单
gengzg
配置
1、修改grub启动的内核版本
vi /boot/grub/grub.conf
将default 0改为1
拷贝mt7601Usta.ko到/lib文件夹
拷贝RT2870STA.dat到 /etc/Wireless/RT2870STA/文件夹
拷贝wifiscan到bin文件夹,chmod 775 /bin/wifiscan
拷贝wifiget.sh到bin文件夹,chm
- Windows端口被占用处理方法
huqiji
windows
以下文章主要以80端口号为例,如果想知道其他的端口号也可以使用该方法..........................1、在windows下如何查看80端口占用情况?是被哪个进程占用?如何终止等. 这里主要是用到windows下的DOS工具,点击"开始"--"运行",输入&
- 开源ckplayer 网页播放器, 跨平台(html5, mobile),flv, f4v, mp4, rtmp协议. webm, ogg, m3u8 !
天梯梦
mobile
CKplayer,其全称为超酷flv播放器,它是一款用于网页上播放视频的软件,支持的格式有:http协议上的flv,f4v,mp4格式,同时支持rtmp视频流格 式播放,此播放器的特点在于用户可以自己定义播放器的风格,诸如播放/暂停按钮,静音按钮,全屏按钮都是以外部图片接口形式调用,用户根据自己的需要制作 出播放器风格所需要使用的各个按钮图片然后替换掉原始风格里相应的图片就可以制作出自己的风格了,
- 简单工厂设计模式
hm4123660
java工厂设计模式简单工厂模式
简单工厂模式(Simple Factory Pattern)属于类的创新型模式,又叫静态工厂方法模式。是通过专门定义一个类来负责创建其他类的实例,被创建的实例通常都具有共同的父类。简单工厂模式是由一个工厂对象决定创建出哪一种产品类的实例。简单工厂模式是工厂模式家族中最简单实用的模式,可以理解为是不同工厂模式的一个特殊实现。
- maven笔记
zhb8015
maven
跳过测试阶段:
mvn package -DskipTests
临时性跳过测试代码的编译:
mvn package -Dmaven.test.skip=true
maven.test.skip同时控制maven-compiler-plugin和maven-surefire-plugin两个插件的行为,即跳过编译,又跳过测试。
指定测试类
mvn test
- 非mapreduce生成Hfile,然后导入hbase当中
Stark_Summer
maphbasereduceHfilepath实例
最近一个群友的boss让研究hbase,让hbase的入库速度达到5w+/s,这可愁死了,4台个人电脑组成的集群,多线程入库调了好久,速度也才1w左右,都没有达到理想的那种速度,然后就想到了这种方式,但是网上多是用mapreduce来实现入库,而现在的需求是实时入库,不生成文件了,所以就只能自己用代码实现了,但是网上查了很多资料都没有查到,最后在一个网友的指引下,看了源码,最后找到了生成Hfile
- jsp web tomcat 编码问题
王新春
tomcatjsppageEncode
今天配置jsp项目在tomcat上,windows上正常,而linux上显示乱码,最后定位原因为tomcat 的server.xml 文件的配置,添加 URIEncoding 属性:
<Connector port="8080" protocol="HTTP/1.1"
connectionTi