- 机器学习: LightGBM模型(优化版)——高效且强大的树形模型
秀儿还能再秀
机器学习决策树LightBMGGBDT
LightGBM(LightGradientBoostingMachine)是一种基于梯度提升决策树(GBDT)的框架,由微软提出。它具有高效的训练速度、低内存占用、支持并行和GPU加速等特点,非常适合大规模数据的训练任务,尤其在分类和回归任务中表现突出。LightGBM的核心原理可以从以下几个方面来理解:LightGBM模型特点(一)基于梯度提升的树模型LightGBM是一个梯度提升决策树(GB
- 组合预测 | Matlab实现LSTM-XGBoost长短期记忆网络组合极限梯度提升树多输入单输出回归预测
机器学习之心
回归预测组合优化组合预测LSTM-XGBoost长短期记忆网络极限梯度提升树多输入单输出回归预测
组合预测|Matlab实现LSTM-XGBoost长短期记忆网络组合极限梯度提升树多输入单输出回归预测目录组合预测|Matlab实现LSTM-XGBoost长短期记忆网络组合极限梯度提升树多输入单输出回归预测效果一览基本描述模型描述代码实现参考资料效果一览基本描述组合预测|Matlab实现LSTM-XGBoost长短期记忆网络组合极限梯度提升树多输入单输出回归预测模型描述深度学习模型与决策树或线性
- 《Python实战进阶》第38集:机器学习模型优化与调参——Grid Search 与 Hyperopt
带娃的IT创业者
Python实战进阶python机器学习开发语言
第38集:机器学习模型优化与调参——GridSearch与Hyperopt摘要在机器学习项目中,超参数的设置对模型性能至关重要。本集聚焦于如何通过网格搜索(GridSearch)和Hyperopt这两种超参数优化方法,提升模型的性能。我们将从理论入手,介绍超参数搜索的核心概念,并通过两个对比实战案例展示如何使用这两种方法优化支持向量机(SVM)和XGBoost模型。最后,我们还将探讨自动化调参工具
- 毕设成品 基于机器学习的乳腺癌数据分析
m0_71572237
毕业设计python毕设
文章目录0简介模型评估KNNClassifierLogisticRegressionClassifierRandomForestClassifierDecisionTreeClassifierGBDT(GradientBoostingDecisionTree)ClassifierAdaBoostBaggingSVM最后0简介今天学长向大家分享一个毕业设计项目毕业设计基于机器学习的乳腺癌数据分析项目
- 鸿蒙HarmonyOS NEXT开发实战:Network Boost Kit(网络加速服务)
我很英俊 小名男男
OpenHarmony鸿蒙开发HarmonyOSharmonyos华为前端开发语言鸿蒙移动开发鸿蒙系统
鸿蒙开发往期必看:HarmonyOSNEXT应用开发性能实践总结一分钟了解”纯血版!鸿蒙HarmonyOSNext应用开发!“非常详细的”鸿蒙HarmonyOSNext应用开发学习路线!(从零基础入门到精通)
- boost::string_ref使用详解
小米的修行之路
Boost库booststring_ref
1、string_ref不分配内存,不对字符串进行拷贝,通过其内部的两个成员变量ptr_和len_标记字符串的起始位置和字符串的长度,实现了字符串的表示,所以效率很高。2、一般情况下,我们使用string_ref只是去观察字符串,而不是去修改字符串。3、在使用string_ref期间,我们应该保证被引用的原始字符串对象可用,不能销毁。如果我们确实需要持有字符串,可以调用成员函数to_string(
- 微服务即时通信系统---(五)框架学习
YangZ123123
微服务即时通信系统学习微服务算法
目录ODB介绍安装build2安装odb-compiler安装ODB运行时库安装mysql和客户端开发包安装boostprofile库安装总体打包安装总体卸载总体升级头文件包含和编译时指明库ODB常见操作介绍类型映射ODB编程类与接口介绍mysql连接池对象类mysql客户端操作句柄类mysql事务操作类针对可能为空的字段封装的类似于智能指针的类型针对查询结果所封装的容器类和条件类mysql操作句
- C++在线OJ负载均衡项目
平凡的小y
c++开发语言
1.演示项目项目源码链接:2.项目所用技术和开发环境所用技术C++STL标准库Boost准标准库(字符串切割)cpp-httplib第三方开源网络库ctemplate第三方开源前端网页渲染库jsoncpp第三方开源序列化、反序列化库负载均衡设计MySQLCconnectAce前端在线编辑器html/css/js/jquery/ajax开发环境Ubuntu云服务器vscodeMysqlWorkben
- 震惊! “深度学习”都在学习什么
扉间798
深度学习学习人工智能
常见的机器学习分类算法俗话说三个臭皮匠胜过诸葛亮这里面集成学习就是将单一的算法弱弱结合算法融合用投票给特征值加权重AdaBoost集成学习算法通过迭代训练一系列弱分类器,给予分类错误样本更高权重,使得后续弱分类器更关注这些样本,然后将这些弱分类器线性组合成强分类器,提高整体分类性能。(一)投票机制投票是一种直观且常用的算法融合策略。在多分类问题中,假设有多个分类器对同一数据进行分类判断。每个分类器
- 机器学习结合伏羲模型高精度多尺度气象分析与降尺度实现
Hardess-god
WRF算法人工智能
随着人工智能的发展,机器学习技术在气象预报领域展现出巨大潜力。本文详细探讨如何结合机器学习(ML)和伏羲模型进行高精度多尺度气象模拟分析,并提供详细的实现步骤和相关代码。1.研究目标与技术路线目标:结合机器学习模型与伏羲气象模式,实现区域和局地高精度降尺度。技术路线:伏羲模型提供大尺度气象数据和预报使用机器学习模型(如CNN、LSTM、XGBoost)进行降尺度2.数据准备与处理2.1气象数据获取
- 探索Python中的集成方法:Stacking
Echo_Wish
Python笔记Python算法python开发语言
在机器学习领域,Stacking是一种高级的集成学习方法,它通过将多个基本模型的预测结果作为新的特征输入到一个元模型中,从而提高整体模型的性能和鲁棒性。本文将深入介绍Stacking的原理、实现方式以及如何在Python中应用。什么是Stacking?Stacking,又称为堆叠泛化(StackedGeneralization),是一种模型集成方法,与Bagging和Boosting不同,它并不直
- 光伏储能直流系统MATLAB仿真(PV光伏阵列+Boost DCDC变换器+负载+双向DCDC变换器+锂离子电池系统)
yyds_2201
matlab开发语言
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述光伏储能直流系统MATLAB仿真研究一、引言二、光伏储能直流系统的基本构成(一)PV光伏阵列(二)BoostDC/DC变换器(三)负载(四)双向DC/DC变换器(五)锂离子电池系统(六)控制模块(七)观测模块三、MATLAB仿真模型建立(一)光伏阵列模型(二)B
- XGBoost算法的相关知识
VariableX
机器学习基础算法机器学习
文章目录背景定义损失函数(1)原始目标函数Obj(2)原始目标函数Obj的泰勒展开(3)具体化目标函数的泰勒展开细节(4)求解目标函数中的wjw_jwj最优切分点算法基于分桶的划分策略正则化模型复杂度Shrinkage特征采样和样本采样EarlyStopping缺失值处理优缺点总结背景讲XGBoost之前,先引入一个实际问题,即预测一家人每个人玩游戏的意愿值:如果我们用XGBoost解决这个问题,
- 实现一个轻量级 C++ 单元测试框架
獨梟
单元测试c++单元测试
如何实现一个轻量级C++单元测试框架——MiniTest在C++项目开发中,单元测试是保证代码质量的重要手段。尽管GoogleTest和Boost.Test是流行的测试框架,但它们较为复杂,适用于大型项目。如果你想要一个轻量级、易于理解的C++单元测试框架,本文将带你实现MiniTest,一个仅需几个头文件即可完成的C++单元测试框架。为什么需要自定义单元测试框架?在C++项目中,单元测试通常需要
- Python自动化炒股:利用XGBoost和LightGBM进行股票市场预测的实战案例
云策量化
Python自动化炒股量化投资量化软件python量化交易QMTPTrade量化炒股量化投资deepseek
推荐阅读:《程序化炒股:如何申请官方交易接口权限?个人账户可以申请吗?》Python自动化炒股:利用XGBoost和LightGBM进行股票市场预测的实战案例在当今快节奏的金融市场中,自动化交易和预测模型成为了投资者和交易者的重要工具。Python以其强大的数据处理能力和丰富的机器学习库,成为了实现这些模型的首选语言。本文将带你了解如何使用XGBoost和LightGBM这两个流行的机器学习算法来
- kaggle-ISIC 2024 - 使用 3D-TBP 检测皮肤癌-学习笔记
supernova121
学习笔记
问题描述:通过从3D全身照片(TBP)中裁剪出单个病变来识别经组织学确诊的皮肤癌病例数据集描述:图像+临床文本信息评价指标:pAUC,用于保证敏感性高于指定阈值下的AUC主流方法分析(文本)基于CatBoost、LGBM和XGBoost三者的组合,为每个算法创建了XX个变体,总共XX个模型,进行集成学习。CatBoost在传统梯度提升决策树(GBDT)基础上,引入了一系列关键技术创新,以提升处理类
- 反激与正激拓扑:区别、选型与应用
DeepGpt
电力电子介绍单片机嵌入式硬件
1.反激与正激的区别反激和正激是两种常见的隔离型开关电源拓扑,主要区别体现在工作原理、电路结构和性能特性上。(1)工作原理反激(Flyback)能量存储与传输:变压器在开关导通时存储能量(电感模式),开关关断时将能量传递到次级。工作模式:基于电感储能,类似于Boost-Buck组合。开关周期:开关导通:初级电流上升,变压器储能,次级二极管反偏。开关关断:变压器释放能量,次级二极管导通,能量传输到负
- XGBoost算法深度解析:从原理到实践
彩旗工作室
人工智能算法机器学习人工智能
一、算法起源与核心思想XGBoost(eXtremeGradientBoosting)由陈天奇于2014年提出,是梯度提升决策树(GBDT)的优化版本。其核心思想通过迭代集成弱学习器(CART树)逐步修正预测误差,并引入正则化机制控制模型复杂度,防止过拟合。与GBDT相比,XGBoost在目标函数中融合了损失函数(衡量预测误差)和正则化项(约束树结构与叶子权重),形成结构风险最小化框架,从而提升泛
- HarmonyOS NEXT-Flutter混合开发之鸿蒙-代码实践
harmonyos-next
在Flutter三端分离模式下完成纯血鸿蒙混入的过程中,虽然官方文档提供了一定的指导,但实际操作中可能会遇到一些坑。以下是我在适配过程中的一些经验总结,供各位开发者参考如果有帮助点个赞。在混入过程中是基于咸鱼团队flutter_boost(这里不讨论和其他方案的差别)和自定义FlutterPlugin实现的。主要涉及内容:环境搭建Fluttermodule创建Futter引入flutter_boo
- 基于boost的共享内存通信demo
CV工程师小朱
C++共享内存IPC通信进程通信父子进程
文章目录前言一、共享内存管理二、图像算法服务中的IPC通信流程三、demo实验结果总结前言在一个系统比较复杂的时候,将模块独立成单独的进程有助于错误定位以及异常重启恢复,不至于某个模块发生崩溃导致整个系统崩溃。当通信数据量比较大时,例如图像数据,可以使用共享内存在进程间交互,比socket快很多。下面介绍一个利用Boost.interprocess和Boost.process模块进行进程间图像数据
- 梯度提升决策树(GBDT)
binggorun
决策树算法机器学习
GBDT(GradientBoostingDecisionTree),全名叫梯度提升决策树,是一种迭代的决策树算法,又叫MART(MultipleAdditiveRegressionTree),它通过构造一组弱的学习器(树),并把多颗决策树的结果累加起来作为最终的预测输出。该算法将决策树与集成思想进行了有效的结合。原理GBDT的核心思想是将多个弱学习器(通常是决策树)组合成一个强大的预测模型。具体
- XGBoost常见面试题(五)——模型对比
月亮月亮要去太阳
机器学习经验分享
XGBoost与GBDT的区别机器学习算法中GBDT和XGBOOST的区别有哪些?-知乎基分类器:传统GBDT以CART树作为基分类器,xgboost还支持线性分类器,这个时候xgboost相当于带L1和L2正则化项的逻辑斯蒂回归(分类问题)或者线性回归(回归问题)。导数:传统GBDT在优化时只用到一阶导数信息,xgboost则对代价函数进行了二阶泰勒展开,同时用到了一阶和二阶导数。同时xgboo
- 储能变流器硬件工程师能力提升路径
DOMINICHZL
硬件能源硬件工程
储能变流器(PCS,PowerConversionSystem)作为储能系统的核心部件,其硬件设计涉及电力电子、控制理论、热管理、电磁兼容(EMC)等多领域技术。以下是储能变流器行业硬件工程师需要具备的核心能力,以及技术提升的路径建议:一、储能变流器硬件工程师的核心能力电力电子基础能力拓扑设计与分析:熟悉Boost/Buck、双向DC-DC、三相逆变器、LLC谐振变换器等拓扑结构,并能根据效率、成
- 在windows上通过idea搭建doris fe的开发环境(失败案例,很多报错都是因为我是离线环境编译,还是得联网可能会顺利点)
fzip
DorisDoris在CentOS7编译
以下是基于Windows10+CentOS环境通过IntelliJIDEA搭建DorisFE开发环境的完整指南,整合多份部署文档的关键步骤和避坑要点:一、前置环境准备1.准备Linux环境,可以使用CentOS7或者8•操作步骤:更新系统包:yumgroupinstall-y"DevelopmentTools"yuminstall-yautomakebisonflexboost-devellibe
- XGBClassifiler函数介绍
浊酒南街
#算法机器学习XGB
目录前言函数介绍示例前言XGBClassifier是XGBoost库中用于分类任务的类。XGBoost是一种高效且灵活的梯度提升决策树(GBDT)实现,它在多种机器学习竞赛中表现出色,尤其擅长处理表格数据。函数介绍XGBClassifiler(max_depth=3,learning_rate=0.1,n_estimators=100,objective='binary:logistic',boo
- 在 CLion 中使用 Boost.Test 进行 C++ 单元测试
獨梟
单元测试c++单元测试开发语言
1.安装Boost.TestBoost.Test是BoostC++库的一部分,因此需要安装完整的Boost库。方法1:使用包管理器安装(推荐)Windows(vcpkg)直接使用CLion集成的vcpkg安装boost-test:也可以通过命令来安装:gitclonehttps://github.com/microsoft/vcpkg.gitcdvcpkgbootstrap-vcpkg.batvc
- 决策树、朴素贝叶斯、随机森林、支持向量机、XGBoost 和 LightGBM算法的R语言实现
生信与基因组学
生信分析项目进阶技能合集算法机器学习r语言
基本逻辑(1)使用rnorm函数生成5个特征变量x1到x5,并根据这些特征变量的线性组合生成一个二分类的响应变量y;(2)将生成的数据存储在数据框中,处理缺失值,并将响应变量转换为因子类型;(3)使用决策树、朴素贝叶斯、随机森林、支持向量机、XGBoost和LightGBM六种机器学习模型算法对数据进行训练和评估;(4)将各个模型的准确率和AUC值存储在结果数据框中,并通过柱状图展示结果。1.R包
- 数据挖掘实战-基于Catboost算法的艾滋病数据可视化与建模分析
艾派森
数据挖掘实战合集python人工智能数据挖掘信息可视化数据分析
♂️个人主页:@艾派森的个人主页✍作者简介:Python学习者希望大家多多支持,我们一起进步!如果文章对你有帮助的话,欢迎评论点赞收藏加关注+目录1.项目背景2.数据集介绍
- Arc 浏览器内显示全链接
江梦寻
macosedge浏览器前端javascript经验分享网络windows
前言arc浏览器由于其优秀的UI和交互效果获得了一批忠实用户,其分享下载的营销方式抓住用户想尝新的事物。用了好几个月后发现这个浏览器真的不错,方便的小窗方式,简单快速的网页优化方案(boost)等,都让我慢慢放弃了chrome浏览器。目前唯一不爽的一点就是没法显示fullURL。有时候在测试环境和正式环境的相同开发工具中不断切换,会把环境搞乱,因此每次都要从sidebar中检查一遍URL再开始操作
- AdaBoost算法
Mr终游
机器学习算法决策树
目录一、核心原理:二、算法步骤三、关键优势:四.局限与解决五、代码示例(鸢尾花数据集)AdaBoost(AdaptiveBoosting)是一种经典的集成学习算法,通过组合多个弱分类器(如决策树)来构建强分类器。其核心思想是通过迭代优化残差(错误)和动态调整样本权重,逐步提升模型性能。以下是对AdaBoost的简明总结和关键要点:一、核心原理:提升法:通过顺序训练多个弱分类器,每轮专注修正前一个模
- 集合框架
天子之骄
java数据结构集合框架
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- Table Driven(表驱动)方法实例
bijian1013
javaenumTable Driven表驱动
实例一:
/**
* 驾驶人年龄段
* 保险行业,会对驾驶人的年龄做年龄段的区分判断
* 驾驶人年龄段:01-[18,25);02-[25,30);03-[30-35);04-[35,40);05-[40,45);06-[45,50);07-[50-55);08-[55,+∞)
*/
public class AgePeriodTest {
//if...el
- Jquery 总结
cuishikuan
javajqueryAjaxWebjquery方法
1.$.trim方法用于移除字符串头部和尾部多余的空格。如:$.trim(' Hello ') // Hello2.$.contains方法返回一个布尔值,表示某个DOM元素(第二个参数)是否为另一个DOM元素(第一个参数)的下级元素。如:$.contains(document.documentElement, document.body); 3.$
- 面向对象概念的提出
麦田的设计者
java面向对象面向过程
面向对象中,一切都是由对象展开的,组织代码,封装数据。
在台湾面向对象被翻译为了面向物件编程,这充分说明了,这种编程强调实体。
下面就结合编程语言的发展史,聊一聊面向过程和面向对象。
c语言由贝尔实
- linux网口绑定
被触发
linux
刚在一台IBM Xserver服务器上装了RedHat Linux Enterprise AS 4,为了提高网络的可靠性配置双网卡绑定。
一、环境描述
我的RedHat Linux Enterprise AS 4安装双口的Intel千兆网卡,通过ifconfig -a命令看到eth0和eth1两张网卡。
二、双网卡绑定步骤:
2.1 修改/etc/sysconfig/network
- XML基础语法
肆无忌惮_
xml
一、什么是XML?
XML全称是Extensible Markup Language,可扩展标记语言。很类似HTML。XML的目的是传输数据而非显示数据。XML的标签没有被预定义,你需要自行定义标签。XML被设计为具有自我描述性。是W3C的推荐标准。
二、为什么学习XML?
用来解决程序间数据传输的格式问题
做配置文件
充当小型数据库
三、XML与HTM
- 为网页添加自己喜欢的字体
知了ing
字体 秒表 css
@font-face {
font-family: miaobiao;//定义字体名字
font-style: normal;
font-weight: 400;
src: url('font/DS-DIGI-e.eot');//字体文件
}
使用:
<label style="font-size:18px;font-famil
- redis范围查询应用-查找IP所在城市
矮蛋蛋
redis
原文地址:
http://www.tuicool.com/articles/BrURbqV
需求
根据IP找到对应的城市
原来的解决方案
oracle表(ip_country):
查询IP对应的城市:
1.把a.b.c.d这样格式的IP转为一个数字,例如为把210.21.224.34转为3524648994
2. select city from ip_
- 输入两个整数, 计算百分比
alleni123
java
public static String getPercent(int x, int total){
double result=(x*1.0)/(total*1.0);
System.out.println(result);
DecimalFormat df1=new DecimalFormat("0.0000%");
- 百合——————>怎么学习计算机语言
百合不是茶
java 移动开发
对于一个从没有接触过计算机语言的人来说,一上来就学面向对象,就算是心里上面接受的了,灵魂我觉得也应该是跟不上的,学不好是很正常的现象,计算机语言老师讲的再多,你在课堂上面跟着老师听的再多,我觉得你应该还是学不会的,最主要的原因是你根本没有想过该怎么来学习计算机编程语言,记得大一的时候金山网络公司在湖大招聘我们学校一个才来大学几天的被金山网络录取,一个刚到大学的就能够去和
- linux下tomcat开机自启动
bijian1013
tomcat
方法一:
修改Tomcat/bin/startup.sh 为:
export JAVA_HOME=/home/java1.6.0_27
export CLASSPATH=$CLASSPATH:$JAVA_HOME/lib/tools.jar:$JAVA_HOME/lib/dt.jar:.
export PATH=$JAVA_HOME/bin:$PATH
export CATALINA_H
- spring aop实例
bijian1013
javaspringAOP
1.AdviceMethods.java
package com.bijian.study.spring.aop.schema;
public class AdviceMethods {
public void preGreeting() {
System.out.println("--how are you!--");
}
}
2.beans.x
- [Gson八]GsonBuilder序列化和反序列化选项enableComplexMapKeySerialization
bit1129
serialization
enableComplexMapKeySerialization配置项的含义
Gson在序列化Map时,默认情况下,是调用Key的toString方法得到它的JSON字符串的Key,对于简单类型和字符串类型,这没有问题,但是对于复杂数据对象,如果对象没有覆写toString方法,那么默认的toString方法将得到这个对象的Hash地址。
GsonBuilder用于
- 【Spark九十一】Spark Streaming整合Kafka一些值得关注的问题
bit1129
Stream
包括Spark Streaming在内的实时计算数据可靠性指的是三种级别:
1. At most once,数据最多只能接受一次,有可能接收不到
2. At least once, 数据至少接受一次,有可能重复接收
3. Exactly once 数据保证被处理并且只被处理一次,
具体的多读几遍http://spark.apache.org/docs/lates
- shell脚本批量检测端口是否被占用脚本
ronin47
#!/bin/bash
cat ports |while read line
do#nc -z -w 10 $line
nc -z -w 2 $line 58422>/dev/null2>&1if[ $?-eq 0]then
echo $line:ok
else
echo $line:fail
fi
done
这里的ports 既可以是文件
- java-2.设计包含min函数的栈
bylijinnan
java
具体思路参见:http://zhedahht.blog.163.com/blog/static/25411174200712895228171/
import java.util.ArrayList;
import java.util.List;
public class MinStack {
//maybe we can use origin array rathe
- Netty源码学习-ChannelHandler
bylijinnan
javanetty
一般来说,“有状态”的ChannelHandler不应该是“共享”的,“无状态”的ChannelHandler则可“共享”
例如ObjectEncoder是“共享”的, 但 ObjectDecoder 不是
因为每一次调用decode方法时,可能数据未接收完全(incomplete),
它与上一次decode时接收到的数据“累计”起来才有可能是完整的数据,是“有状态”的
p
- java生成随机数
cngolon
java
方法一:
/**
* 生成随机数
* @author cngolon@126.com
* @return
*/
public synchronized static String getChargeSequenceNum(String pre){
StringBuffer sequenceNum = new StringBuffer();
Date dateTime = new D
- POI读写海量数据
ctrain
海量数据
import java.io.FileOutputStream;
import java.io.OutputStream;
import org.apache.poi.xssf.streaming.SXSSFRow;
import org.apache.poi.xssf.streaming.SXSSFSheet;
import org.apache.poi.xssf.streaming
- mysql 日期格式化date_format详细使用
daizj
mysqldate_format日期格式转换日期格式化
日期转换函数的详细使用说明
DATE_FORMAT(date,format) Formats the date value according to the format string. The following specifiers may be used in the format string. The&n
- 一个程序员分享8年的开发经验
dcj3sjt126com
程序员
在中国有很多人都认为IT行为是吃青春饭的,如果过了30岁就很难有机会再发展下去!其实现实并不是这样子的,在下从事.NET及JAVA方面的开发的也有8年的时间了,在这里在下想凭借自己的亲身经历,与大家一起探讨一下。
明确入行的目的
很多人干IT这一行都冲着“收入高”这一点的,因为只要学会一点HTML, DIV+CSS,要做一个页面开发人员并不是一件难事,而且做一个页面开发人员更容
- android欢迎界面淡入淡出效果
dcj3sjt126com
android
很多Android应用一开始都会有一个欢迎界面,淡入淡出效果也是用得非常多的,下面来实现一下。
主要代码如下:
package com.myaibang.activity;
import android.app.Activity;import android.content.Intent;import android.os.Bundle;import android.os.CountDown
- linux 复习笔记之常见压缩命令
eksliang
tar解压linux系统常见压缩命令linux压缩命令tar压缩
转载请出自出处:http://eksliang.iteye.com/blog/2109693
linux中常见压缩文件的拓展名
*.gz gzip程序压缩的文件
*.bz2 bzip程序压缩的文件
*.tar tar程序打包的数据,没有经过压缩
*.tar.gz tar程序打包后,并经过gzip程序压缩
*.tar.bz2 tar程序打包后,并经过bzip程序压缩
*.zi
- Android 应用程序发送shell命令
gqdy365
android
项目中需要直接在APP中通过发送shell指令来控制lcd灯,其实按理说应该是方案公司在调好lcd灯驱动之后直接通过service送接口上来给APP,APP调用就可以控制了,这是正规流程,但我们项目的方案商用的mtk方案,方案公司又没人会改,只调好了驱动,让应用程序自己实现灯的控制,这不蛋疼嘛!!!!
发就发吧!
一、关于shell指令:
我们知道,shell指令是Linux里面带的
- java 无损读取文本文件
hw1287789687
读取文件无损读取读取文本文件charset
java 如何无损读取文本文件呢?
以下是有损的
@Deprecated
public static String getFullContent(File file, String charset) {
BufferedReader reader = null;
if (!file.exists()) {
System.out.println("getFull
- Firebase 相关文章索引
justjavac
firebase
Awesome Firebase
最近谷歌收购Firebase的新闻又将Firebase拉入了人们的视野,于是我做了这个 github 项目。
Firebase 是一个数据同步的云服务,不同于 Dropbox 的「文件」,Firebase 同步的是「数据」,服务对象是网站开发者,帮助他们开发具有「实时」(Real-Time)特性的应用。
开发者只需引用一个 API 库文件就可以使用标准 RE
- C++学习重点
lx.asymmetric
C++笔记
1.c++面向对象的三个特性:封装性,继承性以及多态性。
2.标识符的命名规则:由字母和下划线开头,同时由字母、数字或下划线组成;不能与系统关键字重名。
3.c++语言常量包括整型常量、浮点型常量、布尔常量、字符型常量和字符串性常量。
4.运算符按其功能开以分为六类:算术运算符、位运算符、关系运算符、逻辑运算符、赋值运算符和条件运算符。
&n
- java bean和xml相互转换
q821424508
javabeanxmlxml和bean转换java bean和xml转换
这几天在做微信公众号
做的过程中想找个java bean转xml的工具,找了几个用着不知道是配置不好还是怎么回事,都会有一些问题,
然后脑子一热谢了一个javabean和xml的转换的工具里,自己用着还行,虽然有一些约束吧 ,
还是贴出来记录一下
顺便你提一下下,这个转换工具支持属性为集合、数组和非基本属性的对象。
packag
- C 语言初级 位运算
1140566087
位运算c
第十章 位运算 1、位运算对象只能是整形或字符型数据,在VC6.0中int型数据占4个字节 2、位运算符: 运算符 作用 ~ 按位求反 << 左移 >> 右移 & 按位与 ^ 按位异或 | 按位或 他们的优先级从高到低; 3、位运算符的运算功能: a、按位取反: ~01001101 = 101
- 14点睛Spring4.1-脚本编程
wiselyman
spring4
14.1 Scripting脚本编程
脚本语言和java这类静态的语言的主要区别是:脚本语言无需编译,源码直接可运行;
如果我们经常需要修改的某些代码,每一次我们至少要进行编译,打包,重新部署的操作,步骤相当麻烦;
如果我们的应用不允许重启,这在现实的情况中也是很常见的;
在spring中使用脚本编程给上述的应用场景提供了解决方案,即动态加载bean;
spring支持脚本