AsyncTask

 
    AsyncTask的execute的执行流程为 
    先调用ThreadPoolExecutor.execute(mFuture); 
    然后ThreadPoolExecutor.execute(mFuture) 会调用ThreadPoolExecutor.addWorker(mFuture); 
    最后ThreadPoolExecutor.addWorker(mFuture)会调用mFuture的run()方法,run方法中就是该线程要执行操作的地方 
    到此我们来关注一下mFuture,AsyncTask中的mFuture是一个FutureTask,FutureTask实现了Future<V>, Runnable两个接口, 
    Future 表示异步计算的结果。它提供了检查计算是否完成的方法,以等待计算的完成,并获取计算的结果,计算完成后只能使用 get 方法来获取结果。 
    mFuture以mWorker作为参数 
    现看mFuture的构造方法: 
public void run() { 
    sync.innerRun(); 
 
    sync是什么呢?Sync类是一个内部类,我们看看它的初始化 
public FutureTask(Callable<V> callable) { 
    if (callable == null) 
        throw new NullPointerException(); 
    sync = new Sync(callable); 
    在看看sync.innerRun()方法: 
void innerRun() { 
    if (!compareAndSetState(READY, RUNNING)) 
        return; 
 
    runner = Thread.currentThread(); 
    if (getState() == RUNNING) { // recheck after setting thread 
        V result; 
        try { 
            result = callable.call(); 
        } catch (Throwable ex) { 
            setException(ex); 
            return; 
        } 
        set(result); 
    } else { 
        releaseShared(0); // cancel 
    } 
    从代码可以看到,其实最终是调用了callable.call()这个方法。 
    从AsyncTask中我们可以知道,我们传入的Callable是我们的WorkerRunnable 
    所以,我们会调用WorkerRunnable的call()方法,在call方法里面 
    返回postResult(doInBackground(mParams)); 
    通知UI线程更新,这就是调用过程 
Notes: 
1: 
    因为AsyncTask里面的内部handler和Executor都是静态变量,所以,他们控制着所有的子类。 
2: 
    我们可以通过AsyncTask.execute()方法来调用系统默认的线程池来处理当前的任务, 
    系统默认的线程池用的是SerialExecutor.这个线程池控制所有任务按顺序执行。也就是一次只执行一条. 
    当前执行完了,才执行下一条.2.3平台以前是所有的任务并发执行,这会导致一种情况,就是其中一条任务执行出问题了,会引起其他任务 
    出现错误. 
3: 
    AsyncTask.executeOnExecutor(AsyncTask.THREAD_POOL_EXECUTOR)你也可以采用这个系统提供的线程池来处理你的任务 
    默认这个线程池是并发处理任务的,也就是不按顺序来.核心为5条,最大128条 
4: 
    你也可以使用自定义的线程池,这样就可以即使的执行你的任务需求,而不是用系统的。因为用系统默认的线程池可以需要等待,它默认 
    是按顺序执行(THREAD_POOL_EXECUTOR)或者最多执行5个(SerialExecutor). 
    自己使用自定义线程池方式如下: 
    new AsyncTask.executeOnExecutor((ExecutorService)Executors.newCachedThreadPool()). 
5:  不要随意使用AsyncTask,除非你必须要与UI线程交互.默认情况下使用Thread即可,要注意需要将线程优先级调低. 
    从google官方文档你也可以看到,AsyncTasks should ideally be used for short operations (a few seconds at the most.) 
    AsyncTask适合处理短时间的操作,长时间的操作,比如 下载 一个很大的视频,这就需要你使用自己的线程来下载,不管是断点下载还是其它的. 
    当然,如果你需要开启自定义的很多线程来处理你的任务,切记你此时可以考虑自定义线程池 
 */  
public abstract class AsyncTask<Params, Progress, Result> {  
    private static final String LOG_TAG = "AsyncTask";  
    // 核心线程数是要  
    private static final int CORE_POOL_SIZE = 5;  
    // 最大线程数支持128  
    private static final int MAXIMUM_POOL_SIZE = 128;  
    // 这个参数的的意思是当前线程池里面的thread如果超过了规定的核心线程5,如果有线程的空闲时间超过了这个数值,  
    // 数值的单位自己指定,就回收该线程的资源,达到动态调整线程池资源的目的.  
    private static final int KEEP_ALIVE = 1;  
    // ThreadFactory是用来在线程池中构建新线程的方法.可以看到每次构建一个方法,名字都不同.为"AsyncTask # 1++".  
    private static final ThreadFactory sThreadFactory = new ThreadFactory() {  
        private final AtomicInteger mCount = new AtomicInteger(1);  
  
        public Thread newThread(Runnable r) {  
            return new Thread(r, "AsyncTask #" + mCount.getAndIncrement());  
        }  
    };  
    // 线程池所使用的缓冲队列.FIFO,它用于存放如果当前线程池中核心线程已满,此时来的任务都被放到缓冲队列中等待被处理.  
    // 初始化容量为10  
    private static final BlockingQueue<Runnable> sPoolWorkQueue =  
            new LinkedBlockingQueue<Runnable>(10);  
  
    /** 
     * An {@link Executor} that can be used to execute tasks in parallel. 
     */  
    // 线程池的初始化,指定了核心线程5,最大线程128,超时1s,缓冲队列等, 你在使用asyncTask的时候,可以传入这个参数,  
    // 就可以让多条线程并发的执行了.比如:executeOnExecutor(AsyncTask.THREAD_POOL_EXECUTOR)  
    public static final Executor THREAD_POOL_EXECUTOR  
            = new ThreadPoolExecutor(CORE_POOL_SIZE, MAXIMUM_POOL_SIZE, KEEP_ALIVE,  
                    TimeUnit.SECONDS, sPoolWorkQueue, sThreadFactory);  
  
    /** 
     * An {@link Executor} that executes tasks one at a time in serial 
     * order.  This serialization is global to a particular process. 
     */  
    // 从这个线程池内部看,已经不是并行执行任务,而是一次只执行一个.  
    public static final Executor SERIAL_EXECUTOR = new SerialExecutor();  
    // 消息数值  
    private static final int MESSAGE_POST_RESULT = 0x1;  
    private static final int MESSAGE_POST_PROGRESS = 0x2;  
    // 这个InternalHandler就是用来是UI线程打交道的。可以看到它是个静态的变量。也就是说谁第一次调用它,下一次另一个  
    // 线程来调用,也不会实例话这个常量.关于这个handler,默认asynctask都是从主线程中调用的,所以,这个Handler默认  
    // 获得了主线程的Looper,所以就能和主线程来交互. Notes:假如你在一个子线程中构建了自己的Looper并使用Asynctask,  
    // 应该会出问题,因为此时这个Handler就属于子线程了,就不能去操控UI的操作.这应该算是AsyncTask的Bug.网上有人说  
    // 在4.0上运行没问题,2.3会有问题,原因是因为4.0中的ActivityThread.main方法里面最先用主线程的Looper来初始化了这个  
    // AsyncTask。理论上Asynctask应该判断当前的Looper如果不是MainThread的Looper的话,抛出异常,遗憾的是,  
    // google没有考虑到这里,只是在文档中要求必须在主线程中调用,其实,很不好!  
    private static final InternalHandler sHandler = new InternalHandler();  
  
    private static volatile Executor sDefaultExecutor = SERIAL_EXECUTOR;  
    // 自定义的静态内部类  
    private final WorkerRunnable<Params, Result> mWorker;  
    // 其实就是也一个Runnable,实现了这个接口  
    private final FutureTask<Result> mFuture;  
  
    // 默认为pending状态。  
    private volatile Status mStatus = Status.PENDING;  
    // 原子操作,专门用来处理并发访问,就可以不用synchronized  
    private final AtomicBoolean mCancelled = new AtomicBoolean();  
    private final AtomicBoolean mTaskInvoked = new AtomicBoolean();  
  
    private static class SerialExecutor implements Executor {  
        // ArrayDeque是一个双向队列,我们来理解下这个线程池是如何做到一次只  
        // 执行一条任务的.比如此时有多处先后都调用了AsyncTask.execute()方法,  
        // 对第一条最先到的任务来说,首先自己被假如到了队列中,因为第一次mActive == null成立,  
        // 所以执行THREAD_POOL_EXECUTOR.execute(mActive).且mActive 此时不等于Null.  
        // 所以第二条任务来的时候,只是被加入到了队列中,并不会执行.除非第一条任务执行完了,在它的finnally方法中  
        // 调用scheduleNext()去再次从对列中取出下一条任务来执行.这样就实现了所有任务按顺序执行的功能.  
        final ArrayDeque<Runnable> mTasks = new ArrayDeque<Runnable>();  
        Runnable mActive;  
  
        public synchronized void execute(final Runnable r) {  
            // 把线程offer到队列中  
            mTasks.offer(new Runnable() {  
                public void run() {  
                    try {  
                        r.run();  
                    } finally {  
                        // 一条执行完了,执行下一条任务  
                        scheduleNext();  
                    }  
                }  
            });  
            if (mActive == null) {  
                scheduleNext();  
            }  
        }  
  
        protected synchronized void scheduleNext() {  
            if ((mActive = mTasks.poll()) != null) {  
                THREAD_POOL_EXECUTOR.execute(mActive);  
            }  
        }  
    }  
  
    /** 
     * Indicates the current status of the task. Each status will be set only once 
     * during the lifetime of a task. 
     */  
    public enum Status {  
        /** 
         * Indicates that the task has not been executed yet. 
         */  
        PENDING,  
        /** 
         * Indicates that the task is running. 
         */  
        RUNNING,  
        /** 
         * Indicates that {@link AsyncTask#onPostExecute} has finished. 
         */  
        FINISHED,  
    }  
  
    /** @hide Used to force static handler to be created. */  
    public static void init() {  
        sHandler.getLooper();  
    }  
  
    /** @hide */  
    public static void setDefaultExecutor(Executor exec) {  
        sDefaultExecutor = exec;  
    }  
  
    /** 
     * Creates a new asynchronous task. This constructor must be invoked on the UI thread. 
     */  
    public AsyncTask() {  
        //初始化mWorker并复写call方法,后面会介绍什么时候调用  
        mWorker = new WorkerRunnable<Params, Result>() {  
            // 这个方法就是当你嗲用excutor.excute()方法后执行的方法。至于是如何执行的,我们后面会分析  
            public Result call() throws Exception {  
                mTaskInvoked.set(true);  
                // 将线程优先级设置为后台线程,默认和主线程优先级一样,如果不这样做,也会降低程序性能.因为会优先  
                // 抢占cpu资源.所以,如果你在程序中不使用asyncTask而是自己new 一条线程出来,记得把线程的优先级设置为  
                // 后台线程  
                Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);  
                //这个地方调用了我们自己实现的doInBackground  
                return postResult(doInBackground(mParams));  
            }  
        };  
       // 用mWorker创建一个可取消的异步计算任务  
        mFuture = new FutureTask<Result>(mWorker) {  
            @Override  
            // 当任务不管是正常终止、异常或取消而完成的,都回调此方法, 即isDone()为true时,isDone不管成功还是失败都  
            // 返回true  
            protected void done() {  
                try {  
                    // 如果当前的task没有被invoke,就被finish掉  
                    postResultIfNotInvoked(get());  
                } catch (InterruptedException e) {  
                    android.util.Log.w(LOG_TAG, e);  
                } catch (ExecutionException e) {  
                    throw new RuntimeException("An error occured while executing doInBackground()",  
                            e.getCause());  
                } catch (CancellationException e) {  
                    postResultIfNotInvoked(null);  
                }  
            }  
        };  
    }  
  
    private void postResultIfNotInvoked(Result result) {  
        final boolean wasTaskInvoked = mTaskInvoked.get();  
        if (!wasTaskInvoked) {  
            postResult(result);  
        }  
    }  
  
    // 当doInBackground结束了,调用PostResult发布结果  
    private Result postResult(Result result) {  
        @SuppressWarnings("unchecked")  
        Message message = sHandler.obtainMessage(MESSAGE_POST_RESULT,  
                new AsyncTaskResult<Result>(this, result));  
        message.sendToTarget();  
        return result;  
    }  
  
    /** 
     * Returns the current status of this task. 
     * 
     * @return The current status. 
     */  
    // 获得当前的状态  
    public final Status getStatus() {  
        return mStatus;  
    }  
  
    /** 
     * Override this method to perform a computation on a background thread. The 
     * specified parameters are the parameters passed to {@link #execute} 
     * by the caller of this task. 
     * 
     * This method can call {@link #publishProgress} to publish updates 
     * on the UI thread. 
     * 
     * @param params The parameters of the task. 
     * 
     * @return A result, defined by the subclass of this task. 
     * 
     * @see #onPreExecute() 
     * @see #onPostExecute 
     * @see #publishProgress 
     */  
    // 用户自己实现  
    protected abstract Result doInBackground(Params... params);  
  
    /** 
     * Runs on the UI thread before {@link #doInBackground}. 
     * 
     * @see #onPostExecute 
     * @see #doInBackground 
     */  
    // 用户自己实现  
    protected void onPreExecute() {  
    }  
  
    /** 
     * <p>Runs on the UI thread after {@link #doInBackground}. The 
     * specified result is the value returned by {@link #doInBackground}.</p> 
     * 
     * <p>This method won't be invoked if the task was cancelled.</p> 
     * 
     * @param result The result of the operation computed by {@link #doInBackground}. 
     * 
     * @see #onPreExecute 
     * @see #doInBackground 
     * @see #onCancelled(Object) 
     */  
    @SuppressWarnings({"UnusedDeclaration"})  
    // 用户自己实现  
    protected void onPostExecute(Result result) {  
    }  
  
    /** 
     * Runs on the UI thread after {@link #publishProgress} is invoked. 
     * The specified values are the values passed to {@link #publishProgress}. 
     * 
     * @param values The values indicating progress. 
     * 
     * @see #publishProgress 
     * @see #doInBackground 
     */  
    @SuppressWarnings({"UnusedDeclaration"})  
    // 用户自己实现  
    protected void onProgressUpdate(Progress... values) {  
    }  
  
    /** 
     * <p>Runs on the UI thread after {@link #cancel(boolean)} is invoked and 
     * {@link #doInBackground(Object[])} has finished.</p> 
     * 
     * <p>The default implementation simply invokes {@link #onCancelled()} and 
     * ignores the result. If you write your own implementation, do not call 
     * <code>super.onCancelled(result)</code>.</p> 
     * 
     * @param result The result, if any, computed in 
     *               {@link #doInBackground(Object[])}, can be null 
     * 
     * @see #cancel(boolean) 
     * @see #isCancelled() 
     */  
    @SuppressWarnings({"UnusedParameters"})  
    protected void onCancelled(Result result) {  
        onCancelled();  
    }  
  
    /** 
     * <p>Applications should preferably override {@link #onCancelled(Object)}. 
     * This method is invoked by the default implementation of 
     * {@link #onCancelled(Object)}.</p> 
     * 
     * <p>Runs on the UI thread after {@link #cancel(boolean)} is invoked and 
     * {@link #doInBackground(Object[])} has finished.</p> 
     * 
     * @see #onCancelled(Object) 
     * @see #cancel(boolean) 
     * @see #isCancelled() 
     */  
    protected void onCancelled() {  
    }  
  
    /** 
     * Returns <tt>true</tt> if this task was cancelled before it completed 
     * normally. If you are calling {@link #cancel(boolean)} on the task, 
     * the value returned by this method should be checked periodically from 
     * {@link #doInBackground(Object[])} to end the task as soon as possible. 
     * 
     * @return <tt>true</tt> if task was cancelled before it completed 
     * 
     * @see #cancel(boolean) 
     */  
    public final boolean isCancelled() {  
        return mCancelled.get();  
    }  
  
    /** 
     * <p>Attempts to cancel execution of this task.  This attempt will 
     * fail if the task has already completed, already been cancelled, 
     * or could not be cancelled for some other reason. If successful, 
     * and this task has not started when <tt>cancel</tt> is called, 
     * this task should never run. If the task has already started, 
     * then the <tt>mayInterruptIfRunning</tt> parameter determines 
     * whether the thread executing this task should be interrupted in 
     * an attempt to stop the task.</p> 
     * 
     * <p>Calling this method will result in {@link #onCancelled(Object)} being 
     * invoked on the UI thread after {@link #doInBackground(Object[])} 
     * returns. Calling this method guarantees that {@link #onPostExecute(Object)} 
     * is never invoked. After invoking this method, you should check the 
     * value returned by {@link #isCancelled()} periodically from 
     * {@link #doInBackground(Object[])} to finish the task as early as 
     * possible.</p> 
     * 
     * @param mayInterruptIfRunning <tt>true</tt> if the thread executing this 
     *        task should be interrupted; otherwise, in-progress tasks are allowed 
     *        to complete. 
     * 
     * @return <tt>false</tt> if the task could not be cancelled, 
     *         typically because it has already completed normally; 
     *         <tt>true</tt> otherwise 
     * 
     * @see #isCancelled() 
     * @see #onCancelled(Object) 
     */  
    public final boolean cancel(boolean mayInterruptIfRunning) {  
        mCancelled.set(true);  
        return mFuture.cancel(mayInterruptIfRunning);  
    }  
  
    /** 
     * Waits if necessary for the computation to complete, and then 
     * retrieves its result. 
     * 
     * @return The computed result. 
     * 
     * @throws CancellationException If the computation was cancelled. 
     * @throws ExecutionException If the computation threw an exception. 
     * @throws InterruptedException If the current thread was interrupted 
     *         while waiting. 
     */  
    public final Result get() throws InterruptedException, ExecutionException {  
        return mFuture.get();  
    }  
  
    /** 
     * Waits if necessary for at most the given time for the computation 
     * to complete, and then retrieves its result. 
     * 
     * @param timeout Time to wait before cancelling the operation. 
     * @param unit The time unit for the timeout. 
     * 
     * @return The computed result. 
     * 
     * @throws CancellationException If the computation was cancelled. 
     * @throws ExecutionException If the computation threw an exception. 
     * @throws InterruptedException If the current thread was interrupted 
     *         while waiting. 
     * @throws TimeoutException If the wait timed out. 
     */  
    public final Result get(long timeout, TimeUnit unit) throws InterruptedException,  
            ExecutionException, TimeoutException {  
        return mFuture.get(timeout, unit);  
    }  
  
    /** 
     * Executes the task with the specified parameters. The task returns 
     * itself (this) so that the caller can keep a reference to it. 
     * 
     * <p>Note: this function schedules the task on a queue for a single background 
     * thread or pool of threads depending on the platform version.  When first 
     * introduced, AsyncTasks were executed serially on a single background thread. 
     * Starting with {@link android.os.Build.VERSION_CODES#DONUT}, this was changed 
     * to a pool of threads allowing multiple tasks to operate in parallel. Starting 
     * {@link android.os.Build.VERSION_CODES#HONEYCOMB}, tasks are back to being 
     * executed on a single thread to avoid common application errors caused 
     * by parallel execution.  If you truly want parallel execution, you can use 
     * the {@link #executeOnExecutor} version of this method 
     * with {@link #THREAD_POOL_EXECUTOR}; however, see commentary there for warnings 
     * on its use. 
     * 
     * <p>This method must be invoked on the UI thread. 
     * 
     * @param params The parameters of the task. 
     * 
     * @return This instance of AsyncTask. 
     * 
     * @throws IllegalStateException If {@link #getStatus()} returns either 
     *         {@link AsyncTask.Status#RUNNING} or {@link AsyncTask.Status#FINISHED}. 
     * 
     * @see #executeOnExecutor(java.util.concurrent.Executor, Object[]) 
     * @see #execute(Runnable) 
     */  
    // 这个方法就是用户调用的excute方法,默认采用asynctask自带的线程池串行执行任务  
    public final AsyncTask<Params, Progress, Result> execute(Params... params) {  
        return executeOnExecutor(sDefaultExecutor, params);  
    }  
  
    /** 
     * Executes the task with the specified parameters. The task returns 
     * itself (this) so that the caller can keep a reference to it. 
     * 
     * <p>This method is typically used with {@link #THREAD_POOL_EXECUTOR} to 
     * allow multiple tasks to run in parallel on a pool of threads managed by 
     * AsyncTask, however you can also use your own {@link Executor} for custom 
     * behavior. 
     * 
     * <p><em>Warning:</em> Allowing multiple tasks to run in parallel from 
     * a thread pool is generally <em>not</em> what one wants, because the order 
     * of their operation is not defined.  For example, if these tasks are used 
     * to modify any state in common (such as writing a file due to a button click), 
     * there are no guarantees on the order of the modifications. 
     * Without careful work it is possible in rare cases for the newer version 
     * of the data to be over-written by an older one, leading to obscure data 
     * loss and stability issues.  Such changes are best 
     * executed in serial; to guarantee such work is serialized regardless of 
     * platform version you can use this function with {@link #SERIAL_EXECUTOR}. 
     * 
     * <p>This method must be invoked on the UI thread. 
     * 
     * @param exec The executor to use.  {@link #THREAD_POOL_EXECUTOR} is available as a 
     *              convenient process-wide thread pool for tasks that are loosely coupled. 
     * @param params The parameters of the task. 
     * 
     * @return This instance of AsyncTask. 
     * 
     * @throws IllegalStateException If {@link #getStatus()} returns either 
     *         {@link AsyncTask.Status#RUNNING} or {@link AsyncTask.Status#FINISHED}. 
     * 
     * @see #execute(Object[]) 
     */  
    public final AsyncTask<Params, Progress, Result> executeOnExecutor(Executor exec,  
            Params... params) {  
        // 可以看出同一个任务只能执行一次  
        if (mStatus != Status.PENDING) {  
            switch (mStatus) {  
                case RUNNING:  
                    throw new IllegalStateException("Cannot execute task:"  
                            + " the task is already running.");  
                case FINISHED:  
                    throw new IllegalStateException("Cannot execute task:"  
                            + " the task has already been executed "  
                            + "(a task can be executed only once)");  
            }  
        }  
  
        mStatus = Status.RUNNING;  
        // 调用用户--UI线程---自己实现的方法  
        onPreExecute();  
  
        mWorker.mParams = params;  
        // 这个方法就会调用前面的mWorker的call方法  
        exec.execute(mFuture);  
  
        return this;  
    }  
  
    /** 
     * Convenience version of {@link #execute(Object...)} for use with 
     * a simple Runnable object. See {@link #execute(Object[])} for more 
     * information on the order of execution. 
     * 
     * @see #execute(Object[]) 
     * @see #executeOnExecutor(java.util.concurrent.Executor, Object[]) 
     */  
    public static void execute(Runnable runnable) {  
        sDefaultExecutor.execute(runnable);  
    }  
  
    /** 
     * This method can be invoked from {@link #doInBackground} to 
     * publish updates on the UI thread while the background computation is 
     * still running. Each call to this method will trigger the execution of 
     * {@link #onProgressUpdate} on the UI thread. 
     * 
     * {@link #onProgressUpdate} will note be called if the task has been 
     * canceled. 
     * 
     * @param values The progress values to update the UI with. 
     * 
     * @see #onProgressUpdate 
     * @see #doInBackground 
     */  
    protected final void publishProgress(Progress... values) {  
        if (!isCancelled()) {  
            sHandler.obtainMessage(MESSAGE_POST_PROGRESS,  
                    new AsyncTaskResult<Progress>(this, values)).sendToTarget();  
        }  
    }  
  
    private void finish(Result result) {  
        if (isCancelled()) {  
            onCancelled(result);  
        } else {  
            onPostExecute(result);  
        }  
        mStatus = Status.FINISHED;  
    }  
  
    //  与UI交互  
    private static class InternalHandler extends Handler {  
        @SuppressWarnings({"unchecked", "RawUseOfParameterizedType"})  
        @Override  
        public void handleMessage(Message msg) {  
            AsyncTaskResult result = (AsyncTaskResult) msg.obj;  
            switch (msg.what) {  
                case MESSAGE_POST_RESULT:  
                    // There is only one result  
                    result.mTask.finish(result.mData[0]);  
                    break;  
                case MESSAGE_POST_PROGRESS:  
                    result.mTask.onProgressUpdate(result.mData);  
                    break;  
            }  
        }  
    }  
  
    private static abstract class WorkerRunnable<Params, Result> implements Callable<Result> {  
        Params[] mParams;  
    }  
  
    @SuppressWarnings({"RawUseOfParameterizedType"})  
    // 存储异步执行结果的类  
    private static class AsyncTaskResult<Data> {  
        final AsyncTask mTask;  
        final Data[] mData;  
  
        AsyncTaskResult(AsyncTask task, Data... data) {  
            mTask = task;  
            mData = data;  
        }  
    }  
}  

你可能感兴趣的:(AsyncTask)