- 下一代模型技术演进与场景应用突破
智能计算研究中心
其他
内容概要当前模型技术正经历多维度的范式跃迁,可解释性模型与自动化机器学习(AutoML)成为突破传统黑箱困境的核心路径。在底层架构层面,边缘计算与量子计算的融合重构了算力分配模式,联邦学习技术则为跨域数据协作提供了安全可信的解决方案。主流框架如TensorFlow和PyTorch持续迭代优化能力,通过动态参数压缩与自适应超参数调优策略,显著提升模型部署效率。应用层创新呈现垂直化特征,医疗诊断模型通
- 【DevOps】Rancher:rancher2.4.16 高可用安装文档
运维归一
DevOpsdockerzookeeper运维
视频教程视频教程:https://edu.csdn.net/learn/38191/604440?spm=1003.2001.3001.4143RancherHA集群安装部署当前最新版本V2.4.16安装流程:rke安装k8s,在k8s集群上搭建helm,通过helm创建rancher容器应用节点名称ip地址系统版本rke,k8s-master01,rancher192.168.1.9centos
- Dify 项目开源大模型应用开发平台
魔王阿卡纳兹
IT杂谈开源项目观察开源difLLM开发平台
Dify是一款开源的大语言模型(LLM)应用开发平台,旨在简化生成式AI应用的创建、部署和持续优化流程。以下从多个维度对该项目进行详细介绍:一、项目定义与核心功能Dify的核心定位是结合后端即服务(BaaS)和LLMOps理念,为开发者提供从原型到生产的全生命周期支持。其核心功能包括:可视化工作流构建通过可视化画布(如ReactFlow)编排AI工作流,支持多步骤任务处理,例如文档解析、模型推理和
- SvelteKit 最新中文文档教程(7)—— 构建和部署
前言Svelte,一个语法简洁、入门容易,面向未来的前端框架。从Svelte诞生之初,就备受开发者的喜爱,根据统计,从2019年到2024年,连续6年一直是开发者最感兴趣的前端框架No.1:Svelte以其独特的编译时优化机制著称,具有轻量级、高性能、易上手等特性,非常适合构建轻量级Web项目。为了帮助大家学习Svelte,我同时搭建了Svelte最新的中文文档站点。如果需要进阶学习,也可以入手我
- 【sglang】sglang出现如下报错sglang/srt/server.py“, line 631, in _wait_and_warmup assert res.status_code
深度求索者
python
sglang部署服务过程中如果出现如下报错:Initializationfailed.warmuperror:Traceback(mostrecentcalllast):[2025-03-1110:17:39]Initializationfailed.warmuperror:Traceback(mostrecentcalllast):File"/miniconda/envs/SGLang/lib/
- Hive与Spark的UDF:数据处理利器的对比与实践
窝窝和牛牛
hivesparkhadoop
文章目录Hive与Spark的UDF:数据处理利器的对比与实践一、UDF概述二、HiveUDF解析实现原理代码示例业务应用三、SparkUDF剖析-JDBC方式使用SparkThriftServer设置通过JDBC使用UDFSparkUDF的Java实现(用于JDBC方式)通过beeline客户端连接使用业务应用场景四、Hive与SparkUDF在JDBC模式下的对比五、实际部署与最佳实践六、总结
- 【手把手教学】DeepSeek官方搜索API博查本地使用指南:从原理到实战,全面解锁智能搜索!
BigNorthBear
python人工智能自然语言处理机器学习语言模型
前言:当大模型遇见本地搜索你是否遇到过这些问题?想在企业内网部署智能搜索,但担心数据泄露风险?需要定制搜索逻辑,但云端API灵活性不足?网络环境不稳定时,搜索服务频繁中断?博查AI搜索API的本地化方案完美解决了这些问题!通过将本地大模型与云端API结合,既能保障数据安全,又能享受实时搜索能力。本文将手把手教你如何实现这一技术方案,即使你是零基础开发者,也能轻松上手!一、本地化原理:为什么能“既本
- 鸿蒙保姆级教学
冬冬小圆帽
harmonyos华为
鸿蒙(HarmonyOS)是华为推出的一款面向全场景的分布式操作系统,支持手机、平板、智能穿戴、智能家居、车载设备等多种设备。鸿蒙系统的核心特点是分布式架构、一次开发多端部署和高性能。以下是从入门到大神级别的鸿蒙开发深度分析,结合代码示例,帮助你逐步掌握鸿蒙开发。1.鸿蒙开发入门1.1环境搭建鸿蒙编译器安装运行教程安装DevEcoStudio:下载并安装DevEcoStudio,这是鸿蒙官方提供的
- PyTorch模型训练实战指南:掌握动态图特性与工业级部署技巧
lmtealily
pytorch人工智能python
前言在深度学习领域,PyTorch凭借其动态计算图、高效的自动微分系统及高度Pythonic的设计哲学,已成为学术界与工业界的主流框架。其即时执行模式大幅简化了模型调试流程,而灵活的模块化设计则为复杂模型的构建提供了坚实基础。然而,从实验原型到工业级部署的全链路实践中,开发者仍需系统性掌握框架核心特性与工程化技巧。本文以实战为导向,深入剖析PyTorch动态图机制与自动微分原理,详解从数据预处理、
- LeetCode 第30题:串联所有单词的子串
Gemini技术窝
leetcode算法数据结构java
大家好!今天我们要探讨的是一道非常有趣的字符串处理题目——LeetCode第30题:串联所有单词的子串。这个问题就像是在寻找字符串中的藏宝图,每个单词都是一个线索,我们需要把这些线索串联起来,找到它们在字符串中的位置。准备好了吗?让我们一起解锁这个问题的解决方案吧!文章目录问题描述解题思路高效代码实现详细讲解代码逻辑图解过程举例说明例子1:简单例子例子2:无匹配项例子3:重复单总结问题描述首先,让
- 云原生边缘计算:分布式智能的时代黎明
桂月二二
云原生边缘计算分布式
引言:从集中式算力到万物智联的范式裂变AT&T边缘节点部署超5000个,特斯拉自动驾驶系统每节点200TOPS算力。国家电网通过边缘计算实现毫秒级电网故障隔离,菜鸟物流分拣效率提升400%。IDC预测2027年边缘基础设施支出将达亿,宝马汽车工厂设备预测性维护准确率达9亿运维成本。一、边缘计算范式进化论1.1算力拓扑结构演变世代大型主机中心化云计算分布式雾计算去中心化边缘计算泛在化神经形态计算体计
- 使用fastapi部署stable diffusion模型
明晚十点睡
代码fastapistablediffusionpytorchpython人工智能深度学习计算机视觉
使用vscode运行stablediffusion模型,每次加载模型都需要10+分钟,为算法及prompt调试带来了极大麻烦。使用jupyter解决自然是一个比较好的方案,但如果jupyter由于种种原因不能使用时,fastapi无疑成为了一个很好的选择。参考github链接:https://github.com/jarvislabsai/fastapi-sd-templatefromfastap
- 网络系统管理专栏-配套练习+知识点详解
漩涡·鸣人
智能路由器网络
目录总体规划1、设备命名规范和设备的基础信息2、密码恢复和软件版本统一模块三:网络搭建与网络冗余备份方案部署表1-11Ipv6地址分配表模块五:出口安全防护与远程接入试题解析:考核点1:考点解析:2、Portfast+Bpduguard防环方案3、rldp◆考核点2:考点解析:◆考核点3:考点解析:◆考核点4:考点解析:◆考核点5:考点解析:◆考核点6:考点解析:◆考核点7:◆考核点8:◆考核点9
- OpenBayes 教程上新丨单卡A6000轻松部署Gemma 3,精准识别黄仁勋演讲实拍
3月12日晚间,谷歌发布了「单卡大魔王」Gemma3,号称是能在单个GPU或TPU上运行的最强模型,真实战绩也证实了官方blog所言非虚——其27B版本击败671B的满血DeepSeekV3,以及o3-mini、Llama-405B,仅次于DeepSeekR1,但在算力需求方面却远低于其他模型。如下图所示:*按照ChatbotArenaElo分数对模型进行排名;圆点表示预估的算力需求随后,谷歌也是
- 软件定义世界下的教育创新:高校计算机实验室应重心转向开源平台
开源
一、一键式教学环境部署,节省90%准备时间•应用模板库:提供200+预置教学工具模板(如JupyterLab+TensorFlow、MySQL集群),教师可根据课程需求选择模板,5分钟内完成包含依赖库、运行环境的全栈部署。•多版本隔离:支持同一服务器并行运行不同版本框架(如Django3.2教学版与4.1开发版),避免版本冲突导致30%的课堂时间浪费。•自助式环境创建:学生通过命令行快速申请带GP
- Hugging Face 模型格式全解析:从 PyTorch 到 GGUF
mingo_敏
DeepLearningpytorch人工智能python
HuggingFace模型格式全解析:从PyTorch到GGUFHuggingFace生态支持多种模型格式,以满足不同场景下的存储、部署和推理需求。以下是主流格式的技术解析与演进脉络:1.PyTorch原生格式(.pt/.pth)特性:直接保存PyTorch的state_dict(模型参数)或完整模型(含结构)。兼容性强,与PyTorch训练/推理流程深度集成。文件体积较大,加载速度较慢,存在安全
- 推荐一个开源的高效头像生成工具,支持API调用
计算机小手
经验分享开源软件
一、简介集成多种头像生成方案,包括:ugly-avatar、multiavatar、jdenticon、facesjs、dicebear等支持docker部署,支持API调用项目开源地址:GitHub-luler/hello_avatar:轻松搭建生成简易头像的api服务二、安装准备好docker、docker-compose环境新建docker-compose.yml,配置内容如下:versio
- GGUF量化模型技术解析与DeepSeek-R1-Distill-Llama-8B选型指南
每天三杯咖啡
人工智能
```markdown#【完全指南】GGUF量化技术与DeepSeek-R1模型选型:从入门到部署##什么是模型量化?(小白扫盲版)###1.1量化就像"模型减肥术"-**传统模型**:每个参数用32位浮点数(好比高清无损图片)-**量化模型**:用4-8位整数存储(类似手机压缩照片)-**核心原理**:`FP32→Int8/Int4`的数学映射,保留关键特征###1.2为什么要量化?|对比项|原
- RAG 企业级应用落地框架细节差异对比
一顿码
架构人工智能python数据挖掘知识图谱语言模型
—1—什么是RAG?RAG检索增强生成本质上来讲,就三件事情:第一、Indexing索引。即如何更有效地存储知识。第二、Retrieval检索。即在庞大的知识库中,如何筛选出少量的有益知识,供大模型参考。第三、Generation生成。即如何将用户的提问与检索到的知识相结合,使得大模型能够生成有价值的回答。这三个步骤表面上看似乎并不复杂,然而在RAG从构建到实际部署的整个流程中,包含了众多精细且复
- “轻松一键生成 AI 图像:Stable Diffusion Online 带来革命性视觉创意体验!“
ai小精灵
人工智能stablediffusion文心一言AI作画chatgpt
StableDiffusionOnline正在为AI图像生成领域树立新标准,将复杂的功能与便捷直观的用户体验相结合。历史上,StableDiffusion的部署步骤带来了重大挑战,特别是对于技术新手而言。然而,StableDiffusionOnline消除了这些障碍,提供了一个既适合新手也适合资深专业人士的酷炫界面。什么是StableDiffusionOnline?StableDiffusionO
- 系统架构设计(以飞控系统、航电系统、机电管理系统、电子电气架构为例)
机载软件与适航
机载系统系统工程适航系统架构架构
架构的定义系统架构涉及对系统的结构和行为进行高层次的描述。它包括系统的组成部分、这些部分之间的关系、与外部环境的交互方式,以及满足特定功能和非功能性需求的方法。系统架构定义了系统的总体设计蓝图,指导系统的开发、集成、部署和维护。系统架构的核心要素组成部分(Components):系统中的独立模块或单元,每个模块执行特定的功能。组件可以是软件模块、硬件设备、数据库、用户界面等。组件间的关系(Rela
- PCDN 与传统 CDN 的对比:优势和劣势分析
yczykjyxgs
pcdn智能路由器
在内容分发领域,PCDN和传统CDN是两种重要的技术手段。传统CDN凭借其成熟的架构,在互联网发展历程中发挥着关键作用。它通过在各地广泛部署缓存服务器,将内容缓存至离用户更近的节点,以此加快分发速度。这种模式下,内容传输路径短,能有效减少延迟,为用户提供稳定的访问体验。不过,传统CDN的大规模服务器部署带来了高昂成本,无论是建设费用还是维护成本都不容小觑。PCDN作为融合了P2P技术的新兴内容分发
- 个人AI助手的未来:Yi AI开源系统助力快速搭建
耶耶Norsea
网络杂烩人工智能开源
摘要YiAI推出了一站式个人AI助手平台解决方案,助力用户快速搭建专属AI助手。该平台采用全套开源系统,涵盖前端应用、后台管理及小程序功能,并基于MIT协议开放使用。同时,平台集成了本地RAG方案,利用Milvus与Weaviate向量数据库支持本地部署,为用户提供高效、灵活的数据处理能力。关键词个人AI助手,快速搭建,开源系统,本地RAG,向量数据库一、YiAI开源系统概述1.1个人AI助手的发
- ERC-6909 最小多代币标准
GTokenTool发币平台
区块链
ERC-6909Token标准是ERC-1155Token标准的一种简化替代方案。ERC-1155标准引入了一种多Token接口,使得单个智能合约能够结合可替代的和不可替代的Token(即,ERC20和ERC721)。ERC-1155解决了多个挑战,例如降低部署成本、最小化以太坊区块链上的冗余字节码,以及简化多Token交易的Token批准流程。然而,由于每次转账都强制要求回调、强制包含批量转账,
- CocoaPods创建本地私有库、远程私有库和公有库
群野
iOS组件化iOS代码管理objective-cioscocoapods
pod库创建过程创建工程更新本地索引库手动创建本地私有库创建自己的pod库部署您的库创建工程gitremoteaddorigin[https://code.adress.com.git]关联远程代码拷贝远程库gitclone[https://code.adress.com.git],进入拷贝工程的目录,gitcommit-am'init'本地提交gitlog查看本地提交记录,gitpush提交到远
- K8S学习之基础三十六:node-exporter部署
云上艺旅
K8S学习kubernetes学习贪心算法prometheus云原生
Prometheusv2.2.1编写yaml文件,包含创建ns、configmap、deployment、service#创建monitoring空间viprometheus-ns.yamlapiVersion:v1kind:Namespacemetadata:name:monitoring#创建SA并绑定权限kubectlcreateserviceaccountmonitor-nmonitori
- 基于 Websoft9 平台的 Odoo 教学实践:助力智能制造、物流与财务会计专业教师提升教学效果
开源
Websoft9作为企业级开源软件的自动化部署与管理平台,为高校智能制造、物流与财务会计等专业提供了完整的Odoo(开源ERP)教学解决方案。以下从部署、维护及功能扩展三方面解析其核心价值:一、部署:开箱即用的企业级业务场景模拟一键构建复杂业务架构Websoft9预置了Odoo全模块集成模板,部署时可自动关联PostgreSQL数据库、Nginx负载均衡及Let'sEncryptSSL证书,还原真
- 从 DeepSeek 到 AI 工具箱:Websoft9 应用托管平台赋能高校教学与科研
人工智能deepseek
从DeepSeek到AI工具箱:Websoft9应用托管平台赋能高校教学与科研人工智能技术的快速发展正在重塑高校的教学与科研生态。从智能教学辅助到跨学科研究,AI工具的应用场景不断扩展,而技术落地的复杂性也带来新的挑战。在这一背景下,如何将大模型能力与多样化AI工具无缝整合,构建安全、易用的科研教学环境,成为高校数字化转型的关键命题。一、高校智能化转型的三大痛点技术门槛高•AI工具部署依赖专业运维
- Websoft9 开源多应用平台:培养学生数字化能力的实战工具
开源实践
引言数字化教育转型的核心在于将技术工具与教学场景深度融合,但传统模式常因环境配置复杂、工具链割裂等问题阻碍实践教学效率。Websoft9开源多应用平台以标准化部署、多工具集成、轻量化运维为核心能力,为教育场景提供了一种技术门槛更低、协作效率更高的解决方案。本文基于实际教学需求与技术验证,探讨如何通过该平台构建数字化能力培养体系。一、技术特性与教育场景的适配性开源生态覆盖全技术栈,缩短教学准备周期平
- CDN与RTC(实时通信)技术
百态老人
实时音视频
CDN(内容分发网络)和RTC(实时通信技术)是两种在现代互联网应用中广泛使用的技术,它们各自具有独特的特点和应用场景。CDN的特点与应用CDN通过在全球范围内部署边缘节点,将内容缓存到用户附近的服务器上,从而减少网络延迟,提高访问速度和用户体验。其主要优势包括:加速静态和动态内容的加载:通过缓存机制和智能路由,CDN可以显著提升网站和应用的响应速度。优化用户体验:通过减轻源服务器的负载,CDN能
- html页面js获取参数值
0624chenhong
html
1.js获取参数值js
function GetQueryString(name)
{
var reg = new RegExp("(^|&)"+ name +"=([^&]*)(&|$)");
var r = windo
- MongoDB 在多线程高并发下的问题
BigCat2013
mongodbDB高并发重复数据
最近项目用到 MongoDB , 主要是一些读取数据及改状态位的操作. 因为是结合了最近流行的 Storm进行大数据的分析处理,并将分析结果插入Vertica数据库,所以在多线程高并发的情境下, 会发现 Vertica 数据库中有部分重复的数据. 这到底是什么原因导致的呢?笔者开始也是一筹莫 展,重复去看 MongoDB 的 API , 终于有了新发现 :
com.mongodb.DB 这个类有
- c++ 用类模版实现链表(c++语言程序设计第四版示例代码)
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T>
class Node
{
private:
Node<T> * next;
public:
T data;
- 最近情况
麦田的设计者
感慨考试生活
在五月黄梅天的岁月里,一年两次的软考又要开始了。到目前为止,我已经考了多达三次的软考,最后的结果就是通过了初级考试(程序员)。人啊,就是不满足,考了初级就希望考中级,于是,这学期我就报考了中级,明天就要考试。感觉机会不大,期待奇迹发生吧。这个学期忙于练车,写项目,反正最后是一团糟。后天还要考试科目二。这个星期真的是很艰难的一周,希望能快点度过。
- linux系统中用pkill踢出在线登录用户
被触发
linux
由于linux服务器允许多用户登录,公司很多人知道密码,工作造成一定的障碍所以需要有时踢出指定的用户
1/#who 查出当前有那些终端登录(用 w 命令更详细)
# who
root pts/0 2010-10-28 09:36 (192
- 仿QQ聊天第二版
肆无忌惮_
qq
在第一版之上的改进内容:
第一版链接:
http://479001499.iteye.com/admin/blogs/2100893
用map存起来号码对应的聊天窗口对象,解决私聊的时候所有消息发到一个窗口的问题.
增加ViewInfo类,这个是信息预览的窗口,如果是自己的信息,则可以进行编辑.
信息修改后上传至服务器再告诉所有用户,自己的窗口
- java读取配置文件
知了ing
1,java读取.properties配置文件
InputStream in;
try {
in = test.class.getClassLoader().getResourceAsStream("config/ipnetOracle.properties");//配置文件的路径
Properties p = new Properties()
- __attribute__ 你知多少?
矮蛋蛋
C++gcc
原文地址:
http://www.cnblogs.com/astwish/p/3460618.html
GNU C 的一大特色就是__attribute__ 机制。__attribute__ 可以设置函数属性(Function Attribute )、变量属性(Variable Attribute )和类型属性(Type Attribute )。
__attribute__ 书写特征是:
- jsoup使用笔记
alleni123
java爬虫JSoup
<dependency>
<groupId>org.jsoup</groupId>
<artifactId>jsoup</artifactId>
<version>1.7.3</version>
</dependency>
2014/08/28
今天遇到这种形式,
- JAVA中的集合 Collectio 和Map的简单使用及方法
百合不是茶
listmapset
List ,set ,map的使用方法和区别
java容器类类库的用途是保存对象,并将其分为两个概念:
Collection集合:一个独立的序列,这些序列都服从一条或多条规则;List必须按顺序保存元素 ,set不能重复元素;Queue按照排队规则来确定对象产生的顺序(通常与他们被插入的
- 杀LINUX的JOB进程
bijian1013
linuxunix
今天发现数据库一个JOB一直在执行,都执行了好几个小时还在执行,所以想办法给删除掉
系统环境:
ORACLE 10G
Linux操作系统
操作步骤如下:
第一步.查询出来那个job在运行,找个对应的SID字段
select * from dba_jobs_running--找到job对应的sid
&n
- Spring AOP详解
bijian1013
javaspringAOP
最近项目中遇到了以下几点需求,仔细思考之后,觉得采用AOP来解决。一方面是为了以更加灵活的方式来解决问题,另一方面是借此机会深入学习Spring AOP相关的内容。例如,以下需求不用AOP肯定也能解决,至于是否牵强附会,仁者见仁智者见智。
1.对部分函数的调用进行日志记录,用于观察特定问题在运行过程中的函数调用
- [Gson六]Gson类型适配器(TypeAdapter)
bit1129
Adapter
TypeAdapter的使用动机
Gson在序列化和反序列化时,默认情况下,是按照POJO类的字段属性名和JSON串键进行一一映射匹配,然后把JSON串的键对应的值转换成POJO相同字段对应的值,反之亦然,在这个过程中有一个JSON串Key对应的Value和对象之间如何转换(序列化/反序列化)的问题。
以Date为例,在序列化和反序列化时,Gson默认使用java.
- 【spark八十七】给定Driver Program, 如何判断哪些代码在Driver运行,哪些代码在Worker上执行
bit1129
driver
Driver Program是用户编写的提交给Spark集群执行的application,它包含两部分
作为驱动: Driver与Master、Worker协作完成application进程的启动、DAG划分、计算任务封装、计算任务分发到各个计算节点(Worker)、计算资源的分配等。
计算逻辑本身,当计算任务在Worker执行时,执行计算逻辑完成application的计算任务
- nginx 经验总结
ronin47
nginx 总结
深感nginx的强大,只学了皮毛,把学下的记录。
获取Header 信息,一般是以$http_XX(XX是小写)
获取body,通过接口,再展开,根据K取V
获取uri,以$arg_XX
&n
- 轩辕互动-1.求三个整数中第二大的数2.整型数组的平衡点
bylijinnan
数组
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class ExoWeb {
public static void main(String[] args) {
ExoWeb ew=new ExoWeb();
System.out.pri
- Netty源码学习-Java-NIO-Reactor
bylijinnan
java多线程netty
Netty里面采用了NIO-based Reactor Pattern
了解这个模式对学习Netty非常有帮助
参考以下两篇文章:
http://jeewanthad.blogspot.com/2013/02/reactor-pattern-explained-part-1.html
http://gee.cs.oswego.edu/dl/cpjslides/nio.pdf
- AOP通俗理解
cngolon
springAOP
1.我所知道的aop 初看aop,上来就是一大堆术语,而且还有个拉风的名字,面向切面编程,都说是OOP的一种有益补充等等。一下子让你不知所措,心想着:怪不得很多人都和 我说aop多难多难。当我看进去以后,我才发现:它就是一些java基础上的朴实无华的应用,包括ioc,包括许许多多这样的名词,都是万变不离其宗而 已。 2.为什么用aop&nb
- cursor variable 实例
ctrain
variable
create or replace procedure proc_test01
as
type emp_row is record(
empno emp.empno%type,
ename emp.ename%type,
job emp.job%type,
mgr emp.mgr%type,
hiberdate emp.hiredate%type,
sal emp.sal%t
- shell报bash: service: command not found解决方法
daizj
linuxshellservicejps
今天在执行一个脚本时,本来是想在脚本中启动hdfs和hive等程序,可以在执行到service hive-server start等启动服务的命令时会报错,最终解决方法记录一下:
脚本报错如下:
./olap_quick_intall.sh: line 57: service: command not found
./olap_quick_intall.sh: line 59
- 40个迹象表明你还是PHP菜鸟
dcj3sjt126com
设计模式PHP正则表达式oop
你是PHP菜鸟,如果你:1. 不会利用如phpDoc 这样的工具来恰当地注释你的代码2. 对优秀的集成开发环境如Zend Studio 或Eclipse PDT 视而不见3. 从未用过任何形式的版本控制系统,如Subclipse4. 不采用某种编码与命名标准 ,以及通用约定,不能在项目开发周期里贯彻落实5. 不使用统一开发方式6. 不转换(或)也不验证某些输入或SQL查询串(译注:参考PHP相关函
- Android逐帧动画的实现
dcj3sjt126com
android
一、代码实现:
private ImageView iv;
private AnimationDrawable ad;
@Override
protected void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout
- java远程调用linux的命令或者脚本
eksliang
linuxganymed-ssh2
转载请出自出处:
http://eksliang.iteye.com/blog/2105862
Java通过SSH2协议执行远程Shell脚本(ganymed-ssh2-build210.jar)
使用步骤如下:
1.导包
官网下载:
http://www.ganymed.ethz.ch/ssh2/
ma
- adb端口被占用问题
gqdy365
adb
最近重新安装的电脑,配置了新环境,老是出现:
adb server is out of date. killing...
ADB server didn't ACK
* failed to start daemon *
百度了一下,说是端口被占用,我开个eclipse,然后打开cmd,就提示这个,很烦人。
一个比较彻底的解决办法就是修改
- ASP.NET使用FileUpload上传文件
hvt
.netC#hovertreeasp.netwebform
前台代码:
<asp:FileUpload ID="fuKeleyi" runat="server" />
<asp:Button ID="BtnUp" runat="server" onclick="BtnUp_Click" Text="上 传" />
- 代码之谜(四)- 浮点数(从惊讶到思考)
justjavac
浮点数精度代码之谜IEEE
在『代码之谜』系列的前几篇文章中,很多次出现了浮点数。 浮点数在很多编程语言中被称为简单数据类型,其实,浮点数比起那些复杂数据类型(比如字符串)来说, 一点都不简单。
单单是说明 IEEE浮点数 就可以写一本书了,我将用几篇博文来简单的说说我所理解的浮点数,算是抛砖引玉吧。 一次面试
记得多年前我招聘 Java 程序员时的一次关于浮点数、二分法、编码的面试, 多年以后,他已经称为了一名很出色的
- 数据结构随记_1
lx.asymmetric
数据结构笔记
第一章
1.数据结构包括数据的
逻辑结构、数据的物理/存储结构和数据的逻辑关系这三个方面的内容。 2.数据的存储结构可用四种基本的存储方法表示,它们分别是
顺序存储、链式存储 、索引存储 和 散列存储。 3.数据运算最常用的有五种,分别是
查找/检索、排序、插入、删除、修改。 4.算法主要有以下五个特性:
输入、输出、可行性、确定性和有穷性。 5.算法分析的
- linux的会话和进程组
网络接口
linux
会话: 一个或多个进程组。起于用户登录,终止于用户退出。此期间所有进程都属于这个会话期。会话首进程:调用setsid创建会话的进程1.规定组长进程不能调用setsid,因为调用setsid后,调用进程会成为新的进程组的组长进程.如何保证? 先调用fork,然后终止父进程,此时由于子进程的进程组ID为父进程的进程组ID,而子进程的ID是重新分配的,所以保证子进程不会是进程组长,从而子进程可以调用se
- 二维数组 元素的连续求解
1140566087
二维数组ACM
import java.util.HashMap;
public class Title {
public static void main(String[] args){
f();
}
// 二位数组的应用
//12、二维数组中,哪一行或哪一列的连续存放的0的个数最多,是几个0。注意,是“连续”。
public static void f(){
- 也谈什么时候Java比C++快
windshome
javaC++
刚打开iteye就看到这个标题“Java什么时候比C++快”,觉得很好笑。
你要比,就比同等水平的基础上的相比,笨蛋写得C代码和C++代码,去和高手写的Java代码比效率,有什么意义呢?
我是写密码算法的,深刻知道算法C和C++实现和Java实现之间的效率差,甚至也比对过C代码和汇编代码的效率差,计算机是个死的东西,再怎么优化,Java也就是和C