- 推理流水线DAG调度:多模型组合执行优化方案
燃灯工作室
Ai人工智能数学建模学习机器学习计算机视觉
一、技术原理与数学模型1.1DAG调度核心公式设推理流水线由n个模型节点组成,定义:V={v1,v2,...,vn}V=\{v_1,v_2,...,v_n\}V={v1,v2,...,vn}为节点集合E={(vi,vj)∣vi→vj}E=\{(v_i,v_j)|v_i\rightarrowv_j\}E={(vi,vj)∣vi→vj}为边集合C(vi)C(v_i)C(vi)为节点viv_ivi的计算
- Spark是什么?可以用来做什么?
Bugkillers
大数据spark大数据分布式
ApacheSpark是一个开源的分布式计算框架,专为处理大规模数据而设计。它最初由加州大学伯克利分校开发,现已成为大数据处理领域的核心工具之一。相比传统的HadoopMapReduce,Spark在速度、易用性和功能多样性上具有显著优势。一、Spark的核心特点速度快:基于内存计算(In-MemoryProcessing),比基于磁盘的MapReduce快10~100倍。支持高效的DAG(有向无
- Spark技术系列(三):Spark算子全解析——从基础使用到高阶优化
数据大包哥
#Sparkspark大数据分布式
Spark技术系列(三):Spark算子全解析——从基础使用到高阶优化1.算子核心概念与分类体系1.1算子本质解析延迟执行机制:转换算子构建DAG,行动算子触发Job执行任务并行度:由RDD分区数决定(可通过spark.default.parallelism全局配置)执行位置优化:基于数据本地性的任务调度策略1.2官方分类标准
- bzoj 1093: [ZJOI2007]最大半连通子图【tarjan+拓扑排序+dp】
weixin_30951743
先tarjan缩成DAG,然后答案就变成了最长链,dp的同时计数即可就是题面太唬人了,没反应过来#include#include#include#include#includeusingnamespacestd;constintN=100005;intn,m,mod,h[N],cnt,dfn[N],low[N],tot,bl[N],col,s[N],top,si[N],d[N],f[N],g[N]
- [ZJOI2007]最大半连通子图【tarjan缩点】【拓扑排序+DP】
ssl_fuyang
tarjanDP拓扑排序图论算法
>LinkluoguP2272ybtoj最大半连通子图>DescriptionN≤105,M≤106N\le10^5,M\le10^6N≤105,M≤106>解题思路强连通子图一定是半连通子图,所以考虑到把这张图进行缩点然后图就变成了一个DAG这时就会发现,题目要求求的最大半连通子图其实就是DAG上的一条链(如果是两条链组合的话,不满足要求)要注意的是,缩点以后建边要注意判重,建重边的话会似的方案
- Flink架构体系:深入解析Apache Flink的架构与工作原理
雨中徜徉的思绪漫溢
flink架构apache大数据
Flink架构体系:深入解析ApacheFlink的架构与工作原理ApacheFlink是一种高性能、分布式、流式处理引擎,被广泛应用于大数据处理和实时分析场景。本文将深入解析Flink的架构体系和工作原理,包括核心组件和数据流处理过程,并提供相应的示例代码。Flink架构概述ApacheFlink的架构基于流式处理模型,它通过将数据流划分为有向无环图(DAG)的形式,将大规模的数据处理任务划分为
- spark为什么比mapreduce快?
京东云开发者
sparkmapreduce大数据
作者:京东零售吴化斌spark为什么比mapreduce快?首先澄清几个误区:1:两者都是基于内存计算的,任何计算框架都肯定是基于内存的,所以网上说的spark是基于内存计算所以快,显然是错误的2;DAG计算模型减少的是磁盘I/O次数(相比于mapreduce计算模型而言),而不是shuffle次数,因为shuffle是根据数据重组的次数而定,所以shuffle次数不能减少所以总结spark比ma
- python dag调度系统开发_基于DAG的分布式任务调度平台-Maat
weixin_39634997
pythondag调度系统开发
背景什么是MaatMaat是一个基于开源项目Airflow的流程调度系统,它支持用户自定义地组装流程节点,流程可以在用户指定的时间触发(支持crontab格式),或由用户手动触发。Maat的所有节点分布式地运行在Hippo上,由Drogo调度。用户可以创建自己的调度节点和执行节点,达到资源隔离的目的。用户可以通过配置的方式安装自己执行节点的运行环境,也可以配置执行节点的副本数。下图展示了一个任务的
- react19设计AntVX6 人工智能建模 DAG 图
I like Code?
AntVX6javascript前端开发语言
HomeTop.tsximportReact,{useState,useEffect,useRef}from'react'importuseStorefrom'../../../store/state'import{Graph,Path}from'@antv/x6'import{History}from'@antv/x6-plugin-history'importAlgoNodefrom'../.
- 深入理解DAG任务调度系统:核心原理与实现
AI天才研究院
计算Python实战编程实践python算法dag
1.背景介绍随着大数据、人工智能等领域的发展,任务调度系统的重要性日益凸显。DirectedAcyclicGraph(DAG)任务调度系统是一种常见的任务调度系统,它可以有效地解决多个依赖关系复杂的任务调度问题。本文将深入探讨DAG任务调度系统的核心原理和实现,为读者提供一个深入的理解。1.1背景介绍1.1.1任务调度系统简介任务调度系统是计算机科学中一个重要的研究领域,它主要关注于在并行计算系统
- Airflow DAG的调度时间探秘
t0_54coder
编程问题解决手册个人开发
引言在数据工程和ETL(Extract,Transform,Load)流程中,ApacheAirflow是一个非常流行的工作流调度工具。Airflow通过DAG(DirectedAcyclicGraph)来定义任务依赖和调度策略。然而,调度时间的设置有时会让新手甚至经验丰富的用户感到困惑。本文将通过一个实际的案例来探讨Airflow中DAG的调度时间设置,帮助读者理解并解决常见的调度问题。背景介绍
- chatgpt赋能Python-python_dag
yakuchrisfor
ChatGptpythonchatgptmatplotlib
PythonDAG学习指南在数据处理和机器学习领域,处理复杂问题通常需要执行多个任务,并按特定顺序执行这些任务。DAG(有向无环图)被用于逻辑顺序的表示,这是标准的处理方式,以及一些技术,如Airflow。这篇文章将为你介绍PythonDAG,并为你提供一个学习指南。什么是PythonDAG?PythonDAG是用Python编程语言创建和处理DAG的框架。由于Python的灵活性、易于学习和使用
- python dag调度系统开发_DAG(有向无环图)动态作业调度程序
weixin_39913628
pythondag调度系统开发
IneedtomanagealargeworkflowofETLtasks,whichexecutiondependsontime,dataavailabilityoranexternalevent.Somejobsmayfailduringexecutionoftheworkflowandthesystemshouldhavetheabilitytorestartafailedworkflowb
- python实现有向无环图(DAG)
少年白char
python
摘自dagobah项目dagfromcollectionsimportOrderedDict,defaultdictfromcopyimportcopy,deepcopyclassDAG(object):"""Directedacyclicgraphimplementation."""def__init__(self):"""ConstructanewDAGwithnonodesoredges."
- Python生成依赖性应用的DAG(有向无环图)拓扑
Sawakita1122
算法
因为研究方向设计到依赖性的应用,做实验需要用到一些随机的DAG(有向无环图)拓扑来作为应用的表示,找了找网上没有符合的代码,于是决定自己写个小脚本来生成大量随机的DAG拓扑。我实验中要用到的依赖性应用拓扑类似于下面这种模式:观察到,DAG包括一个入口节点和一个出口节点,其余的节点都是具有依赖关系的中继节点图中入口节点的入度和出口节点的出度都为0,其余任意节点都至少有一条入边和一条出边。根据有向无环
- 从零开始设计和实现一个 Python 下的 DAG(有向无环图)
Java八股文面试
python开发语言
我们一起来从零开始设计和实现一个Python下的DAG(有向无环图),并结合GitHub上常见的代码模式进行优化。第一步:理解DAG的基本概念和需求首先,我们需要明确DAG的核心概念:节点(Node):代表任务或者操作。有向边(DirectedEdge):表示节点之间的依赖关系,从一个节点指向另一个节点,意味着前者必须在后者之前完成。无环(Acyclic):图中不存在从某个节点出发,经过一系列边最
- spark为什么比mapreduce快?
程序员
作者:京东零售吴化斌spark为什么比mapreduce快?首先澄清几个误区:1:两者都是基于内存计算的,任何计算框架都肯定是基于内存的,所以网上说的spark是基于内存计算所以快,显然是错误的2;DAG计算模型减少的是磁盘I/O次数(相比于mapreduce计算模型而言),而不是shuffle次数,因为shuffle是根据数据重组的次数而定,所以shuffle次数不能减少所以总结spark比m
- spark为什么比mapreduce快?
程序员
作者:京东零售吴化斌spark为什么比mapreduce快?首先澄清几个误区:1:两者都是基于内存计算的,任何计算框架都肯定是基于内存的,所以网上说的spark是基于内存计算所以快,显然是错误的2;DAG计算模型减少的是磁盘I/O次数(相比于mapreduce计算模型而言),而不是shuffle次数,因为shuffle是根据数据重组的次数而定,所以shuffle次数不能减少所以总结spark比m
- 【Elasticsearch】Token Graphs
risc123456
Elasticsearchelasticsearch
Elasticsearch的TokenGraphs是一种用于处理文本分析的高级功能,主要用于处理多词同义词、短语匹配等复杂场景。以下是关于TokenGraphs的详细解释:1.什么是TokenGraphsTokenGraphs是一种有向无环图(DAG),用于表示文本流中的标记(tokens)及其位置关系。在TokenGraph中:•每个位置(position)表示一个节点(node)。•每个标记(
- DS缩写乱争:当小海豚撞上AI顶流,技术圈也逃不过“撞名”修罗场
数据库
DS缩写风云:从“小海豚”到“深度求索”的魔幻现实曾几何时,技术圈提到DS,人们脑海中浮现的是一只灵动的“小海豚”——ApacheDolphinScheduler(简称DS)。这个2019年诞生的分布式任务调度系统,凭借可视化DAG界面、多租户支持和对Hadoop/Spark生态的深度集成,一度是大数据工程师的“梦中情工”。然而,命运的齿轮在2025年初突然加速转动:杭州AI公司DeepSeek(
- 题解 洛谷 Luogu P1983 [NOIP 2013 普及组] 车站分级 拓扑排序 C++
qwq_ovo_pwp
c++数据结构算法图论拓扑排序
题目传送门P1983[NOIP2013普及组]车站分级-洛谷|计算机科学教育新生态https://www.luogu.com.cn/problem/P1983https://www.luogu.com.cn/problem/P1983https://www.luogu.com.cn/problem/P1983思路大小等级划分中,要划分的级别的数目的最小值,就是DAG的层数,通过拓扑排序求得建模知道
- 图的进阶:拓扑排序与关键路径算法详解
W说编程
数据结构与算法C/C++算法图论图搜索数据结构c语言
图的进阶:拓扑排序与关键路径算法详解在数据结构中,图是一种非常重要的数据结构,它广泛应用于各种领域,如网络设计、路径规划、项目管理等。本文将深入探讨图的两个重要算法:拓扑排序和关键路径算法,并通过C语言代码实例进行说明。一、有向无环图(DAG)与拓扑排序**有向无环图(DAG)**是一种特殊的有向图,其中不存在任何环。DAG图在描述含有公共子式的表达式、任务调度等方面具有显著优势。拓扑排序是对DA
- 分布式计算框架
wlstephenw
分布式
分布式计算就是为了把多个计算逻辑能够放到多台机器上执行,执行的逻辑一般使用java或者python等,还牵扯到数据如何分片。计算序列化要将计算逻辑放到多台机器,首先需要的就是将计算逻辑序列化,在网络上传输到多台机器,然后在多台机器上面反序列化,进行执行。资源管理对于计算资源需要进行管理,每台机器启动多少进程,一般按照机器的处理器内核进行分配,即有几个内核就启动几个进程。DAG每一个完整的计算逻辑被
- Apache Airflow 2.1.2:开源工作流管理系统的全面指南
銀河鐵道的企鵝
本文还有配套的精品资源,点击获取简介:ApacheAirflow2.1.2是一个开源的工作流管理系统,用于编排、调度和监控复杂的业务逻辑。它基于DAG(有向无环图)概念,通过Python代码定义任务的Operator,定义任务的执行顺序和条件。该版本提供了任务调度、监控、错误处理、插件扩展和多环境管理等核心功能。解压后包含许可证文件、文档和源代码目录等,且介绍了安装和运行步骤。Airflow适用于
- Apache Flink 替换 Spark Stream的架构与实践( bilibili 案例解读)_streamsparkflink加载udf
2501_90243308
apacheflinkspark
3.基于ApacheFlink的流式计算平台为解决上述问题,bilibili希望根据以下三点要求构建基于ApacheFlink的流式计算平台。第一点,需要提供SQL化编程。bilibili对SQL进行了扩展,称为BSQL。BSQL扩展了Flink底层SQL的上层,即SQL语法层。**第二点,**DAG拖拽编程,一方面用户可以通过画板来构建自己的Pipeline,另一方面用户也可以使用原生Jar方式
- ArgoWorkflow 教程(一)--DevOps 另一选择?云原生 CICD 初体验
本文主要记录了如何在k8s上快速部署云原生的工作流引擎ArgoWorkflow。ArgoWorkflow是什么ArgoWorkflows是一个开源的云原生工作流引擎,用于在Kubernetes上编排并行作业。Argo工作流作为KubernetesCRD实现。定义工作流,其中工作流中的每个步骤都是一个容器。将多步骤工作流建模为一系列任务,或使用DAG来捕获任务之间的依赖关系图。使用Argo可以在很短
- 18.09.29
曹喆120423
今天晚上,写完作业的时候我和妈妈看了一ABC英语,ABC英语简单又好学,还有玩的,真有意思,我今天学了三个单词,第一个是dag是狗,图片上看着很可爱,第二个是cakt是只小猫,小猫也非常可爱,第三个是fish小鱼,小鱼是彩色,有紫色,有黄色,还有粉色,学完单词我还做了游戏,妈妈让我学完这课就写,我觉得学英语挺有意思,我今天就写他了,我喜欢英语,我要和她交朋友。
- spark常见面试题
爱敲代码的小黑
spark大数据分布式
文章目录1.Spark的运行流程?2.Spark中的RDD机制理解吗?3.RDD的宽窄依赖4.DAG中为什么要划分Stage?5.Spark程序执行,有时候默认为什么会产生很多task,怎么修改默认task执行个数?6.RDD中reduceBykey与groupByKey哪个性能好,为什么?7.SparkMasterHA主从切换过程不会影响到集群已有作业的运行,为什么?8.SparkMaster使
- 细说区块链共识机制之DAG
正版江湖走马
提到DAG,大家对它的看法是褒贬不一,相对于其他的共识机制也更具有争议性。就目前而言,关于DAG的区块链项目有艾欧塔,纳诺等等。传统区块链上,新发布的区块会加入到原有的最长的链上面,并且以所有的节点都认为最长的链为准,依次无限延伸。而DAG中每个新加入的单元不仅仅只加入到长链区块,而是加入之前的所有区块。假设当你发布新的交易的时候,前面有两个有效区块,那么你的区块会主动同时链接到前面两个区块之中。
- Spark分布式计算原理
NightFall丶
#Sparkapachesparkspark
目录一、RDD依赖与DAG原理1.1RDD的转换一、RDD依赖与DAG原理Spark根据计算逻辑中的RDD的转换与动作生成RDD的依赖关系,同时这个计算链也形成了逻辑上的DAG。1.1RDD的转换e.g.(以wordcount为例)packagesparkimportorg.apache.spark.{SparkConf,SparkContext}objectWordCount{defmain(a
- mondb入手
木zi_鸣
mongodb
windows 启动mongodb 编写bat文件,
mongod --dbpath D:\software\MongoDBDATA
mongod --help 查询各种配置
配置在mongob
打开批处理,即可启动,27017原生端口,shell操作监控端口 扩展28017,web端操作端口
启动配置文件配置,
数据更灵活 
- 大型高并发高负载网站的系统架构
bijian1013
高并发负载均衡
扩展Web应用程序
一.概念
简单的来说,如果一个系统可扩展,那么你可以通过扩展来提供系统的性能。这代表着系统能够容纳更高的负载、更大的数据集,并且系统是可维护的。扩展和语言、某项具体的技术都是无关的。扩展可以分为两种:
1.
- DISPLAY变量和xhost(原创)
czmmiao
display
DISPLAY
在Linux/Unix类操作系统上, DISPLAY用来设置将图形显示到何处. 直接登陆图形界面或者登陆命令行界面后使用startx启动图形, DISPLAY环境变量将自动设置为:0:0, 此时可以打开终端, 输出图形程序的名称(比如xclock)来启动程序, 图形将显示在本地窗口上, 在终端上输入printenv查看当前环境变量, 输出结果中有如下内容:DISPLAY=:0.0
- 获取B/S客户端IP
周凡杨
java编程jspWeb浏览器
最近想写个B/S架构的聊天系统,因为以前做过C/S架构的QQ聊天系统,所以对于Socket通信编程只是一个巩固。对于C/S架构的聊天系统,由于存在客户端Java应用,所以直接在代码中获取客户端的IP,应用的方法为:
String ip = InetAddress.getLocalHost().getHostAddress();
然而对于WEB
- 浅谈类和对象
朱辉辉33
编程
类是对一类事物的总称,对象是描述一个物体的特征,类是对象的抽象。简单来说,类是抽象的,不占用内存,对象是具体的,
占用存储空间。
类是由属性和方法构成的,基本格式是public class 类名{
//定义属性
private/public 数据类型 属性名;
//定义方法
publ
- android activity与viewpager+fragment的生命周期问题
肆无忌惮_
viewpager
有一个Activity里面是ViewPager,ViewPager里面放了两个Fragment。
第一次进入这个Activity。开启了服务,并在onResume方法中绑定服务后,对Service进行了一定的初始化,其中调用了Fragment中的一个属性。
super.onResume();
bindService(intent, conn, BIND_AUTO_CREATE);
- base64Encode对图片进行编码
843977358
base64图片encoder
/**
* 对图片进行base64encoder编码
*
* @author mrZhang
* @param path
* @return
*/
public static String encodeImage(String path) {
BASE64Encoder encoder = null;
byte[] b = null;
I
- Request Header简介
aigo
servlet
当一个客户端(通常是浏览器)向Web服务器发送一个请求是,它要发送一个请求的命令行,一般是GET或POST命令,当发送POST命令时,它还必须向服务器发送一个叫“Content-Length”的请求头(Request Header) 用以指明请求数据的长度,除了Content-Length之外,它还可以向服务器发送其它一些Headers,如:
- HttpClient4.3 创建SSL协议的HttpClient对象
alleni123
httpclient爬虫ssl
public class HttpClientUtils
{
public static CloseableHttpClient createSSLClientDefault(CookieStore cookies){
SSLContext sslContext=null;
try
{
sslContext=new SSLContextBuilder().l
- java取反 -右移-左移-无符号右移的探讨
百合不是茶
位运算符 位移
取反:
在二进制中第一位,1表示符数,0表示正数
byte a = -1;
原码:10000001
反码:11111110
补码:11111111
//异或: 00000000
byte b = -2;
原码:10000010
反码:11111101
补码:11111110
//异或: 00000001
- java多线程join的作用与用法
bijian1013
java多线程
对于JAVA的join,JDK 是这样说的:join public final void join (long millis )throws InterruptedException Waits at most millis milliseconds for this thread to die. A timeout of 0 means t
- Java发送http请求(get 与post方法请求)
bijian1013
javaspring
PostRequest.java
package com.bijian.study;
import java.io.BufferedReader;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.HttpURL
- 【Struts2二】struts.xml中package下的action配置项默认值
bit1129
struts.xml
在第一部份,定义了struts.xml文件,如下所示:
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache.org/dtds/struts
- 【Kafka十三】Kafka Simple Consumer
bit1129
simple
代码中关于Host和Port是割裂开的,这会导致单机环境下的伪分布式Kafka集群环境下,这个例子没法运行。
实际情况是需要将host和port绑定到一起,
package kafka.examples.lowlevel;
import kafka.api.FetchRequest;
import kafka.api.FetchRequestBuilder;
impo
- nodejs学习api
ronin47
nodejs api
NodeJS基础 什么是NodeJS
JS是脚本语言,脚本语言都需要一个解析器才能运行。对于写在HTML页面里的JS,浏览器充当了解析器的角色。而对于需要独立运行的JS,NodeJS就是一个解析器。
每一种解析器都是一个运行环境,不但允许JS定义各种数据结构,进行各种计算,还允许JS使用运行环境提供的内置对象和方法做一些事情。例如运行在浏览器中的JS的用途是操作DOM,浏览器就提供了docum
- java-64.寻找第N个丑数
bylijinnan
java
public class UglyNumber {
/**
* 64.查找第N个丑数
具体思路可参考 [url] http://zhedahht.blog.163.com/blog/static/2541117420094245366965/[/url]
*
题目:我们把只包含因子
2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14
- 二维数组(矩阵)对角线输出
bylijinnan
二维数组
/**
二维数组 对角线输出 两个方向
例如对于数组:
{ 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 9, 10, 11, 12 },
{ 13, 14, 15, 16 },
slash方向输出:
1
5 2
9 6 3
13 10 7 4
14 11 8
15 12
16
backslash输出:
4
3
- [JWFD开源工作流设计]工作流跳跃模式开发关键点(今日更新)
comsci
工作流
既然是做开源软件的,我们的宗旨就是给大家分享设计和代码,那么现在我就用很简单扼要的语言来透露这个跳跃模式的设计原理
大家如果用过JWFD的ARC-自动运行控制器,或者看过代码,应该知道在ARC算法模块中有一个函数叫做SAN(),这个函数就是ARC的核心控制器,要实现跳跃模式,在SAN函数中一定要对LN链表数据结构进行操作,首先写一段代码,把
- redis常见使用
cuityang
redis常见使用
redis 通常被认为是一个数据结构服务器,主要是因为其有着丰富的数据结构 strings、map、 list、sets、 sorted sets
引入jar包 jedis-2.1.0.jar (本文下方提供下载)
package redistest;
import redis.clients.jedis.Jedis;
public class Listtest
- 配置多个redis
dalan_123
redis
配置多个redis客户端
<?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi=&quo
- attrib命令
dcj3sjt126com
attr
attrib指令用于修改文件的属性.文件的常见属性有:只读.存档.隐藏和系统.
只读属性是指文件只可以做读的操作.不能对文件进行写的操作.就是文件的写保护.
存档属性是用来标记文件改动的.即在上一次备份后文件有所改动.一些备份软件在备份的时候会只去备份带有存档属性的文件.
- Yii使用公共函数
dcj3sjt126com
yii
在网站项目中,没必要把公用的函数写成一个工具类,有时候面向过程其实更方便。 在入口文件index.php里添加 require_once('protected/function.php'); 即可对其引用,成为公用的函数集合。 function.php如下:
<?php /** * This is the shortcut to D
- linux 系统资源的查看(free、uname、uptime、netstat)
eksliang
netstatlinux unamelinux uptimelinux free
linux 系统资源的查看
转载请出自出处:http://eksliang.iteye.com/blog/2167081
http://eksliang.iteye.com 一、free查看内存的使用情况
语法如下:
free [-b][-k][-m][-g] [-t]
参数含义
-b:直接输入free时,显示的单位是kb我们可以使用b(bytes),m
- JAVA的位操作符
greemranqq
位运算JAVA位移<<>>>
最近几种进制,加上各种位操作符,发现都比较模糊,不能完全掌握,这里就再熟悉熟悉。
1.按位操作符 :
按位操作符是用来操作基本数据类型中的单个bit,即二进制位,会对两个参数执行布尔代数运算,获得结果。
与(&)运算:
1&1 = 1, 1&0 = 0, 0&0 &
- Web前段学习网站
ihuning
Web
Web前段学习网站
菜鸟学习:http://www.w3cschool.cc/
JQuery中文网:http://www.jquerycn.cn/
内存溢出:http://outofmemory.cn/#csdn.blog
http://www.icoolxue.com/
http://www.jikexue
- 强强联合:FluxBB 作者加盟 Flarum
justjavac
r
原文:FluxBB Joins Forces With Flarum作者:Toby Zerner译文:强强联合:FluxBB 作者加盟 Flarum译者:justjavac
FluxBB 是一个快速、轻量级论坛软件,它的开发者是一名德国的 PHP 天才 Franz Liedke。FluxBB 的下一个版本(2.0)将被完全重写,并已经开发了一段时间。FluxBB 看起来非常有前途的,
- java统计在线人数(session存储信息的)
macroli
javaWeb
这篇日志是我写的第三次了 前两次都发布失败!郁闷极了!
由于在web开发中常常用到这一部分所以在此记录一下,呵呵,就到备忘录了!
我对于登录信息时使用session存储的,所以我这里是通过实现HttpSessionAttributeListener这个接口完成的。
1、实现接口类,在web.xml文件中配置监听类,从而可以使该类完成其工作。
public class Ses
- bootstrp carousel初体验 快速构建图片播放
qiaolevip
每天进步一点点学习永无止境bootstrap纵观千象
img{
border: 1px solid white;
box-shadow: 2px 2px 12px #333;
_width: expression(this.width > 600 ? "600px" : this.width + "px");
_height: expression(this.width &
- SparkSQL读取HBase数据,通过自定义外部数据源
superlxw1234
sparksparksqlsparksql读取hbasesparksql外部数据源
关键字:SparkSQL读取HBase、SparkSQL自定义外部数据源
前面文章介绍了SparSQL通过Hive操作HBase表。
SparkSQL从1.2开始支持自定义外部数据源(External DataSource),这样就可以通过API接口来实现自己的外部数据源。这里基于Spark1.4.0,简单介绍SparkSQL自定义外部数据源,访
- Spring Boot 1.3.0.M1发布
wiselyman
spring boot
Spring Boot 1.3.0.M1于6.12日发布,现在可以从Spring milestone repository下载。这个版本是基于Spring Framework 4.2.0.RC1,并在Spring Boot 1.2之上提供了大量的新特性improvements and new features。主要包含以下:
1.提供一个新的sprin