Splay tree 伸展树
1.基本思想:把本次访问的结点通过一系列的旋转操作,变换为根结点,同时要保持树为二叉查找树(BST)。
2.旋转操作:Zig,Zag.(代码注释中有说明)
3.核心操作:Splay(伸展).
4.5个基本操作:
Find(x,&Spt); //查找操作,在Spt中查找值为x的元素,然后把x所在的结点变为Splay tree的根结点
Insert(x,&Spt);//在spt中插入值为x的结点,并把x所在的结点变为Splay tree的根结点
Delete(x,&Spt);//在spt中删除值为x的结点
Join(&s1,&s2);//合并s1,s2两棵Splay tree
Split(x,&s,&s1,&s2);//把值为 x的 结点左右子树分离成2个Splay tree(s1,s2)
5.实现:(参考LRJ的书)
5(1).需要用到的数据结构:
int right[].left[],next[],father[];
DataType data[];
5(2).说明:
right[p],left[p]记录的是结点p的右儿子和左儿子.
father[p]是p 的父亲结点.
next[] 是存放结点的表,手动实现内存分配.
data[p]对应p结点存放的数据.
5(3).实现代码:
#include<iostream>
#include<queue>
using namespace std;
/**
** author: yfr
** date: 2012-1-10
** project: splay tree
** reference: LRJ's Book
**/
#define SIZE 100
int Left[SIZE],Right[SIZE],father[SIZE],next[SIZE],data[SIZE];
/**
基本函数声明
**/
void Init();
int newnode(int d);
void delnode(int p);
//********************************
void Zig(int &);
void Zag(int &);
void Splay(int &x,int &s);
int BST_find(int x,int p);
int SPT_find(int x,int &p);
int BST_insert(int x,int &p);
void SPT_insert(int x,int &p);
void remove(int x,int &p);
//********************************
int findmax(int &s);
int findmin(int &s);
int join(int &s1,int &s2);
void split(int x,int &s,int &s1,int &s2);
//********************************
/**
/ \
p x
/ \ Zig(x) / \
x <> -----------------> <> p
/ \ / \
<> <> <> <>
**/
//zig zag 函数 注意指针修改时要成对去修改
void Zig(int &x)
{
int p = father[x];
Left[p] = Right[x];
if(Right[x])//如果右子树存在
father[Right[x]] = p;
Right[x] = p;
father[x] = father[p];
father[p] = x;
//这步很关键!!
if(data[father[x]]>data[x])
Left[father[x]] = x;
else
Right[father[x]] = x;
}
/**
/ \
x p
/ \ Zag(x) / \
p <> <----------------- <> x
/ \ / \
<> <> <> <>
**/
void Zag(int &x)
{
int p = father[x];
Right[p] = Left[x];
if(Left[x])//如果左子树存在
father[Left[x]] = p;
Left[x] = p;
father[x] = father[p];
father[p] = x;
//这步很关键!!
if(data[father[x]]>data[x])
Left[father[x]] = x;
else
Right[father[x]] = x;
}
//s是树根,x是待伸长的结点
void Splay(int &x,int &s)
{
int p;
while(father[x])
{
p = father[x];
if(!father[p])//如果p是根
{
if( x == Left[p])
Zig(x);
else if( x == Right[p])
Zag(x);
}
else//如果不是树根
{
int g = father[p];//祖先结点
if(Left[g]==p && Left[p]==x) //LL的情况
{
Zig(p);
Zig(x);
}
else if(Left[g]==p&&Right[p]==x) //LR的情况
{
Zag(x);
Zig(x);
}
else if(Right[g]==p&&Left[p]==x) //RL的情况
{
Zig(x);
Zag(x);
}
else if(Right[g]==p&&Right[p]==x) //RR的情况
{
Zag(p);
Zag(x);
}
}
}
s = x;//变为树根
}
//初始化各容器
void Init()
{
memset(Left,0,sizeof(Left));
memset(Right,0,sizeof(Right));
memset(father,0,sizeof(father));
for(int i=0;i<SIZE;i++)
next[i] = i+1;
}
//模拟内存分配函数
int newnode(int d)
{
int p = next[0];
next[0] = next[p];
data[p] = d;
return p;
}
void delnode(int p)
{
Left[p] = Right[p] = father[p] = 0;
next[p] = next[0];
next[0] = p;
}
//*********返回插入结点的编号,以便用来Splay**************//
int BST_insert(int x,int &p)
{
if(!p){ p = newnode(x); return p;}
else if(x < data[p])
{
int q = BST_insert(x,Left[p]);
father[Left[p]] = p;//修改父亲指针
return q;
}
else if(x >= data[p])
{
int q = BST_insert(x,Right[p]);
father[Right[p]] = p;//修改父亲指针
return q;
}
}
//SPT的insert操作
void SPT_insert(int x,int &p)
{
int q = BST_insert(x,p);
Splay(q,p);//伸展
}
int BST_find(int x,int p)
{
if(!p)return 0;//空树
if(x == data[p]) return p;
else if(x < data[p]) return BST_find(x,Left[p]);
else return BST_find(x,Right[p]);
}
int SPT_find(int x,int &s)
{
int q = BST_find(x,s);
if(q)//如果查找成功
Splay(q,s);
return q;
}
int findmax(int &s)
{
int p = s;
while(Right[p]) p = Right[p];
Splay(p,s);
return p;
}
int findmin(int &s)
{
int p = s;
while(Left[p]) p = Left[p];
Splay(p,s);
return p;
}
/*******************************************************/
int join(int &s1,int &s2)
{
father[s1] = father[s2] = 0;//断开与公共先祖结点的连接 ,此步很关键
if(!s1) return s2;
if(!s2) return s1;
int q = findmax(s1);
Right[s1] = s2;
father[s2] = s1;
return s1;
}
void split(int x,int &s,int &s1,int &s2)
{
int p = SPT_find(x,s);
s1 = Left[p];
s2 = Right[p];
}
void remove(int x,int &p)
{
int q = SPT_find(x,p);
if(q){//如果找到了x
int temp = p;
p = join(Left[p],Right[p]);
delnode(temp);
}
}
/****************************************************************/
//辅助函数
void order(int p)
{
if(!p)return;
order(Left[p]);
cout<<data[p]<<endl;
order(Right[p]);
}
void bfs(int p)
{
if(!p)return;
queue<int> q;
q.push(p);
while(!q.empty())
{
int v = q.front();
q.pop();
if(Left[v]) q.push(Left[v]);
if(Right[v]) q.push(Right[v]);
cout<<data[v]<<endl;
}
}
int main()
{
freopen("dataout.txt","w",stdout);
Init();
int ROOT = 0;
SPT_insert(12,ROOT);//build SPT
SPT_insert(8,ROOT);
SPT_insert(2,ROOT);
SPT_insert(7,ROOT);
SPT_insert(13,ROOT);
remove(13,ROOT);
order(ROOT);
cout<<"--------------"<<endl;
bfs(ROOT);
cout<<"-----------"<<endl;
cout<<father[ROOT]<<endl;
cout<<"------------"<<endl;
int s1,s2;
split(7,ROOT,s1,s2);
bfs(s1);
cout<<"---------"<<endl;
bfs(s2);
return 0;
}