题目描述:
Givennsegments (1 dimensional) andqpoints, for each point you have to find the number of segments which contain that point. A pointpiwill lie in a segmentA BifA ≤ pi≤ B.
For example, if the segments are(6 12), (8 8), (10 12), (8 11), (0 12)and the point is11, then it is contained by4segments.
Input starts with an integerT (≤ 5), denoting the number of test cases.
Each case starts with a line containing two integersn (1 ≤ n ≤ 50000)andq (1 ≤ q ≤ 50000).
Each of the nextnlines contains two integersAkBk(0 ≤ Ak≤ Bk≤ 108)denoting a segment.
Each of the nextqlines contains an integer denoting a point. Each of them range in[0, 108].
For each case, print the case number in a single line. Then for each point, print the number of segments that contain that point.
Sample Input |
Output for Sample Input |
1 5 4 6 12 8 8 10 12 8 11 0 12 11 12 2 20 |
Case 1: 4 3 1 0 |
大意:先给定若干条线段,然后给定Q个询问,询问的形式为给定一个点,输出该点被线段覆盖多少次。
线段树功能:查询,成段更新
#include<iostream> #include<cstring> #include<cstdio> #include<algorithm> using namespace std; #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 const int MAXN = 222222; int arr[MAXN]; struct Seg{ int a,b; }s[MAXN]; int pt[MAXN],cov[MAXN<<2],N,T,S,Q; void build(int l,int r,int rt){ cov[rt] = 0; if(l==r)return; int m = (l+r)>>1; build(lson); build(rson); } void pushDOWN(int rt){ if(cov[rt]){ cov[rt<<1]+=cov[rt]; cov[rt<<1|1]+=cov[rt]; cov[rt] = 0; } } void update(int L,int R,int l,int r,int rt){ if(L<=l&&R>=r){ cov[rt]++; return; } pushDOWN(rt); int m = (l+r)>>1; if(m>=L)update(L,R,lson); if(m<R)update(L,R,rson); } int query(int pos,int l,int r,int rt){ if(l==r){ return cov[rt]; } pushDOWN(rt); int m = (l+r)>>1; if(pos<=m)return query(pos,lson); else return query(pos,rson); } int bs(int x){ int l = 0,r = N-1,m; while(l<=r){ m = (l+r)>>1; if(arr[m]==x)return m; else if(arr[m]>x)r = m-1; else l = m+1; } return -1; } int main(){ scanf("%d",&T); for(int cas=1;cas<=T;cas++){ scanf("%d%d",&S,&Q);N = 0; for(int i=0;i<S;i++){ scanf("%d%d",&s[i].a,&s[i].b); arr[N++] = s[i].a; arr[N++] = s[i].b; } for(int i=0;i<Q;i++){ scanf("%d",&pt[i]); arr[N++] = pt[i]; } sort(arr,arr+N); int temp = 1; for(int i=1;i<N;i++)if(arr[i]!=arr[i-1])arr[temp++] = arr[i]; N = temp; build(0,N-1,1); for(int i=0;i<S;i++){ update(bs(s[i].a),bs(s[i].b),0,N-1,1); } printf("Case %d:\n",cas); for(int i=0;i<Q;i++){ printf("%d\n",query(bs(pt[i]),0,N-1,1)); } } return 0; }