仅做个保留吧,等完成之后一起写。
import Image,ImageFont,ImageDraw
import os,sys
from math import atan2,pi
import pickle
DURATION = 1000
DIAMETER = 20
COLORDIFF = 10
TEXTCOLOR = (128,128,128)
BACKGROUND = (255,255,255)
MODE = 'sample'
samples = None
def purifyIM(image):
frame = image.load()
(w,h)=image.size
for i in range(h):
for j in range(w):
if frame[j,i] < TEXTCOLOR:
image.putpixel( (j,i), TEXTCOLOR )
else:
image.putpixel( (j,i), BACKGROUND )
return image
def purify(region):
frame = region.getdata()
(w,h)=region.size
for i in range(h):
for j in range(w):
if frame[i*w+j] != BACKGROUND and frame[i*w+j] != (0,0,0):
region.putpixel( (j,i), TEXTCOLOR )
else:
region.putpixel( (j,i), BACKGROUND )
return region
def printregion(region):
frame = region.getdata()
(w,h)=region.size
f = file('testCode2.txt','w')
for i in range(h):
for j in range(w):
if frame[i*w+j] != BACKGROUND:
f.write('*')
else:
f.write(' ')
f.write('\n')
f.close()
def getImage(fname):
im = Image.open(fname)
return im
def normalize(im):
regions = imdiv(im)
if len(regions)!=4:
regoins = imdiv2(im)
for k in range(len(regions)):
regions[k] = dorotate(regions[k])
regions[k] = purify( docrop(regions[k]) )
return regions
def dorotate(region):
deg = 0
maxdens = 0
for i in range(-30,31):
dens = density( docrop( region.rotate(i) ) )
if dens > maxdens:
deg = i
maxdens = dens
return region.rotate(deg)
def density(region):
frame = region.getdata()
(w,h) = region.size
area_all = w*h
area = 0
for i in range(h):
for j in range(w):
if frame[i*w+j] != BACKGROUND and frame[i*w+j] != (0,0,0):
area += 1
return 1.0*area/area_all
def docrop(region):
croppos = getcrop(region)
newregion = region.crop(croppos)
return newregion
def getcrop(region):
frame = region.getdata()
(w,h)=region.size
pts = []
ptsi = []
for i in range(h):
for j in range(w):
if frame[i*w+j] != BACKGROUND and frame[i*w+j] != (0,0,0):
pts.append((i,j))
ptsi.append((j,i))
if pts == []:
return [0,0,1,1]
pp1 = min(pts)
pp2 = max(pts)
pp3 = min(ptsi)
pp4 = max(ptsi)
return [pp3[0],pp1[0],pp4[0]+1,pp2[0]+1]
def crackcode(im):
global samples
if not samples:
samples = loadsamples()
regions = normalize(im)
s = []
ans = []
for r in regions:
s.append(match(r,samples).upper())
messup = ['TFY7','FE','38','72YT','CQGR6','G6C','XK','HK','89B','YV','VY']
for i in range(len(s)):
for mess in messup:
if s[i] == mess[0]:
s[i] = mess
if len(s) != 4:
return ['failed']
else:
for s1 in s[0]:
for s2 in s[1]:
for s3 in s[2]:
for s4 in s[3]:
t = s1+s2+s3+s4
ans.append(t)
return ans
def match(region,samples):
if samples == {}:
return None
dists = []
for (k,v) in samples.items():
dists.append( (distance(region,k),v) )
dists.sort()
if MODE == 'sample':
return dists[0][1]
else:
i = 0
while dists[i][1] in ['H','I']:
i += 1
return dists[i][1]
def distance(r1,r2):
den1 = density(r1)
den2 = density(r2)
if 1.0*den1/den2>1:
(den1,den2) = (den2,den1)
r1 = r1.resize(r2.size)
d1 = r1.getdata()
d2 = r2.getdata()
same = [0,0]
total = [0,0]
for i in xrange(len(d1)):
if d1[i] != BACKGROUND:
total[0] += 1
if d1[i] == d2[i]:
same[0] += 1
if d2[i] != BACKGROUND:
total[1] += 1
if d1[i] == d2[i]:
same[1] += 1
return 1 - 1.0*same[0]/total[0] * 1.0*same[1]/total[1] * 1.0*den1/den2
def loadsamples():
pks = pickle.load(open('samples.pk','rb'))
samples = {}
for (pk,v) in pks.items():
im = Image.new('RGB',pk[0])
r = im.crop((0,0,pk[0][0],pk[0][1]))
r.fromstring(pk[1])
samples[r] = v
return samples
def loadttf():
files = [ 'ttf/'+x for x in os.listdir('ttf') ]
fonts = []
for f in files:
fonts.append( ImageFont.truetype(f,32) )
regions = []
regionsv = []
for font in fonts:
im = Image.new( 'RGB', (1000,50), BACKGROUND )
draw = ImageDraw.Draw(im)
draw.text( (0,0),"B C E F G H J K M P Q R T V W X Y 2 3 4 6 7 8 9"\
,font=font,fill=TEXTCOLOR )
regions.extend( imdiv(im) )
regionsv.extend( 'B C E F G H J K M P Q R T V W X Y 2 3 4 6 7 8 9'.split(' ') )
for i in xrange(len(regions)):
regions[i] = docrop(regions[i])
printregion( regions[i] )
kv = {}
for i in range(len(regions)):
kv[regions[i]] = regionsv[i]
return kv
def imdiv(im):
frame = im.load()
(w,h) = im.size
horis = []
for i in range(w):
for j in range(h):
if frame[i,j] != BACKGROUND:
horis.append(i)
break
horis2 = [max(horis[0]-2,0)]
for i in range(1,len(horis)-1):
if horis[i]!=horis[i+1]-1:
horis2.append((horis[i]+horis[i+1])/2)
horis2.append(min(horis[-1]+3,w))
boxes=[]
for i in range(len(horis2)-1):
boxes.append( [horis2[i],0,horis2[i+1],h] )
for k in range(len(boxes)):
verts = []
for j in range(h):
for i in range(boxes[k][0],boxes[k][2]):
if frame[i,j] != BACKGROUND:
verts.append(j)
boxes[k][1] = max(verts[0]-2,0)
boxes[k][3] = min(verts[-1]+3,h)
if boxes == []:
return None
regions = []
for box in boxes:
regions.append( im.crop(box) )
return regions
def imdiv2(im):
divs = {}
frame = im.load()
(w,h) = im.size
for i in range(w):
for j in range(h):
color = frame[i,j]
if color != BACKGROUND:
if divs.has_key( color ):
divs[ color ].append( (i,j) )
else:
divs[ color ] = [ (i,j) ]
regions = []
divs = [ (x[0],sorted(x[1],cmp=lambda x,y:cmp(x[1],y[1]))) for x in divs.items() ]
divs.sort(cmp=lambda x,y:cmp(x[1][0],y[1][0]))
for (color,pts) in divs:
xs = [ x[0] for x in pts ]
ys = [ x[1] for x in pts ]
box = ( min(xs), min(ys), min(max(xs)+1,w), min(max(ys)+1,h) )
regions.append(im.crop(box))
return regions
def train(im):
print 1
global samples
try:
samples = pickle.load(open('samples.pk','rb'))
except:
samples = {}
pickle.dump(samples,open('samples.pk','wb'))
regions = normalize(im)
for region in regions:
printregion(region)
smps = loadsamples()
printframeBy(region)
print match(region,smps).upper()
print 'Enter [0-9a-z] to add to library: '
ans = raw_input()
if len(ans) == 1:
key = (region.size,region.tostring())
samples[key] = ans[0]
pickle.dump(samples,open('samples.pk','wb'))
def printframeBy(im,code=-1):
frame = im.load()
(w,h) = im.size
for j in xrange(h):
for i in xrange(w):
if (code == -1 and frame[i,j] !=BACKGROUND) or (code != -1 and frame[i,j]==code) :
print '*',
else:
print ' ',
print
def identify(fname):
image = getImage(fname)
image = purifyIM(image)
regions = normalize(image)
ans = crackcode(image)
return ans
#printregion(regions[1])
def trainBy(fname):
if sys.argv[1].startswith('train'):
trainfiles = os.listdir(sys.argv[1])
trainfiles.sort()
for trainfile in trainfiles:
trainfile = sys.argv[1]+'/'+trainfile
print trainfile
im = getImage(trainfile)
im = purifyIM(im)
train(im)
if __name__ == '__main__':
if len(sys.argv) == 2:
print "Run training"
trainBy('genimg3.jpg')
else:
print "Run indentify"
identify('genimg3.jpg')