TCP/IP协议族

1 什么是TCP/IP

互联网协议族,是一个网络通讯模型,以及一整个网络传输协议家族,为互联网的基础通讯架构。它常被通称为TCP/IP协议族,简称TCP/IP。因为这个协议家族的两个核心协议,包括TCP和IP,为这个家族中最早通过的标准。里面包括了IP协议,IMCP协议,TCP协议,以及我们更加熟悉的http、ftp、pop3协议等等。


2 TCP/IP协议分层

ISO-OSI的七层协议经典架构如下图,

wKioL1MqpG_RzQlWAABQdE8PKDw157.jpg

TCP/IP分层协议如下,

wKiom1MqpNHzRNV2AAEHalPlt44128.jpg


数据在OSI七层模型中的状态:

wKiom1OjnaDQzdJCAAApwHl0Ra0042.gif


TCP/IP协议被组织成四个概念层,其中有三层对应于ISO参考模型中的相应层。ICP/IP协议族并不包含物理层和数据链路层,因此它不能独立完成整个计算机网络系统的功能,必须与许多其他的协议协同工作。

第一层 网络接口层
  网络接口层包括用于协作IP数据在已有网络介质上传输的协议。实际上TCP/IP标准并不定义与ISO数据链路层和物理层相对应的功能。相反,它定义像地址解析协议(Address Resolution Protocol,ARP)这样的协议,提供TCP/IP协议的数据结构和实际物理硬件之间的接口。

第二层 网络层
  网间层对应于OSI七层参考模型的网络层。本层包含IP协议、RIP协议(Routing Information Protocol,路由信息协议),负责数据的包装、寻址和路由。同时还包含网间控制报文协议(Internet Control Message Protocol,ICMP)用来提供网络诊断信息。

第三层 传输层
  传输层对应于OSI七层参考模型的传输层,它提供两种端到端的通信服务。其中TCP协议(Transmission Control Protocol)提供可靠的数据流运输服务,UDP协议(Use Datagram Protocol)提供不可靠的用户数据报服务。

第四层 应用层
  应用层对应于OSI七层参考模型的应用层和表达层。因特网的应用层协议包括Finger、Whois、FTP(文件传输协议)、Gopher、HTTP(超文本传输协议)、Telent(远程终端协议)、SMTP(简单邮件传送协议)、IRC(因特网中继会话)、NNTP(网络新闻传输协议)等。


3 网络接口层

网络接口层提供了各种物理通信网络接口,包括地址解析协议(Address Resolution Protocol,ARP)以及RARP反地址解析协议,提供TCP/IP协议的数据结构和实际物理硬件之间的接口。

使用linux的ifconfig -a命令,可以得到如下的结果:

lo        Link encap:Local Loopback  
         inet addr:127.0.0.1  Mask:255.0.0.0
         inet6 addr: ::1/128 Scope:Host
         UP LOOPBACK RUNNING  MTU:16436  Metric:1
         RX packets:6993 errors:0 dropped:0 overruns:0 frame:0
         TX packets:6993 errors:0 dropped:0 overruns:0 carrier:0
         collisions:0 txqueuelen:0
         RX bytes:1742532 (1.6 MiB)  TX bytes:1742532 (1.6 MiB)

p5p1      Link encap:Ethernet  HWaddr 78:45:C4:19:47:B0  
         inet addr:172.18.218.210  Bcast:172.18.218.255  Mask:255.255.255.0
         inet6 addr: 2001:250:3002:4294:7a45:c4ff:fe19:47b0/64 Scope:Global
         inet6 addr: fe80::7a45:c4ff:fe19:47b0/64 Scope:Link
         UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
         RX packets:359604 errors:0 dropped:0 overruns:0 frame:0
         TX packets:69068 errors:0 dropped:0 overruns:0 carrier:0
         collisions:0 txqueuelen:1000
         RX bytes:122053107 (116.3 MiB)  TX bytes:7681822 (7.3 MiB)

wlan0     Link encap:Ethernet  HWaddr 08:3E:8E:40:42:4D  
         BROADCAST MULTICAST  MTU:1500  Metric:1
         RX packets:0 errors:0 dropped:0 overruns:0 frame:0
         TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
         collisions:0 txqueuelen:1000
         RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b)

p5p1就是以太网接口,而lo则是loopback接口,wlan0表示无线网络接口,这表明该机器在网络接口层上支持loopback协议、以太网协议和无线网络协议等。

以太网(Ether-net)的定是指数字设备公司( Digital Equipment Corp.)、英特尔公司(Intel Corp.)和Xerox公司在1982年联合公布的一个标准,这个标准里面使用了一种称作CSMA/CD的接入方法。而IEEE802提供的标准集802.3(还有一部分定义到了802.2中)也提供了一个CSMA/CD的标准。这两个标准稍有不同,TCP/IP协议对这种情况的处理方式如下:

以太网的IP数据报封装在RFC894中定义,而IEEE802网络的IP数据报封装在RFC1042中定义。

  1. 一台主机一定要能发送和接收RFC894定义的数据报。

  2. 一台主机可以接收RFC894和RFC1042的封装格式的混合数据报。

  3. 一台主机也许能够发送RFC1042数据报。。如果主机能同时发送两种类型的分组数 据,那么发送的分组必须是可以设置的,而且默认条件下必须是RFC 894分组。


关于loopback接口:

  1. 传给环回地址(一般是127.0.0.1)的任何数据均作为IP输入。

  2. 传给广播地址或多播地址的数据***制一份传给环回接口,然后送到以太网上。这是因为广播传送和多播传送的定义包含主机本身。

  3. 任何传给该主机IP地址的数据均送到环回接口。


4 ARP协议、RARP协议

4.1 ARP协议

ARP(地址解析)协议是一种解析协议,本来主机是完全不知道这个IP对应的是哪个主机的哪个接口,当主机要发送一个IP包的时候,会首先查一下自己的ARP高速缓存(就是一个IP-MAC地址对应表缓存),如果查询的IP-MAC值对不存在,那么主机就向网络发送一个ARP协议广播包,这个广播包里面就有待查询的IP地址,而直接收到这份广播的包的所有主机都会查询自己的IP地址,如果收到广播包的某一个主机发现自己符合条件,那么就准备好一个包含自己的MAC地址的ARP包传送给发送ARP广播的主机,而广播主机拿到ARP包后会更新自己的ARP缓存(就是存放IP-MAC对应表的地方)。发送广播的主机就会用新的ARP缓存数据准备好数据链路层的的数据包发送工作。

一个典型的arp缓存信息如下,在任意一个系统里面用“arp -a”命令:

? (172.18.218.254) at 00:0f:e2:c9:3d:83 [ether] on p5p1
? (172.18.218.224) at 00:24:1d:8a:61:21 [ether] on p5p1


4.2 RARP协议

ARP协议是根据IP地址找其对应的MAC地址,而RARP则是根据MAC地址找其对应IP地址,所以称之为"反向ARP"。具有本地磁盘的系统引导时,一般是从磁盘上的配置文件中读取IP地址,然后即可直接用ARP协议找出与其对应的主机MAC地址。但是无盘机,如X终端或无盘工作站,启动时是通过MAC地址来寻址的,这时就需要通过RARP协议获取IP地址。

RARP的基本工作原理如下:

(1)发送端发送一个本地的RARP广播包,在此广播包中声明自己的MAC地址,并且请求任何收到此请求的RARP服务器分配一个IP地址。

(2)本地网段上的RARP服务器收到此请求后,检查其RARP列表,查找该MAC地址对应的IP地址。如果存在,RARP服务器就给源主机发送一个响应数据包,并将此IP地址提供给对方主机使用;如果不存在,RARP服务器对此不做任何响应。

(3)源端在收到从RARP服务器来的响应信息后,利用得到的IP地址进行通信;如果一直没有收到RARP服务器的响应信息,则表示初始化失败。


5 IP协议、ICMP协议

这两个协议处于网络层中

5.1 IP协议

IP协议是TCP/IP协议的核心,所有的TCP,UDP,IMCP,IGCP的数据都以IP数据格式传输。要注意的是,IP不是可靠的协议,这是说,IP协议没有提供一种数据未传达以后的处理机制--这被认为是上层协议--TCP或UDP要做的事情。所以这也就出现了TCP是一个可靠的协议,而UDP就没有那么可靠的区别。

1. IP协议头

如图所示

ip协议报头

挨个解释它是教科书的活计,我感兴趣的只是那八位的TTL字段,还记得这个字段是做什么的么?这个字段规定该数据包在穿过多少个路由之后才会被抛弃(这里就体现出来IP协议包的不可靠性,它不保证数据被送达),某个ip数据包每穿过一个路由器,该数据包的TTL数值就会减少1,当该数据包的TTL成为零,它就会被自动抛弃。这个字段的最大值也就是255,也就是说一个协议包也就在路由器里面穿行255次就会被抛弃了,根据系统的不同,这个数字也不一样,一般是32或者是64,Tracerouter这个工具就是用这个原理工作的,tranceroute的-m选项要求最大值是255,也就是因为这个TTL在IP协议里面只有8bit。

现在的ip版本号是4,所以也称作IPv4。现在还有IPv6,而且运用也越来越广泛了。


2. IP路由选择

当一个IP数据包准备好了的时候,IP数据包(或者说是路由器)是如何将数据包送到目的地的呢?它是怎么选择一个合适的路径来"送货"的呢?

最特殊的情况是目的主机和主机直连,那么主机根本不用寻找路由,直接把数据传递过去就可以了。至于是怎么直接传递的,这就要靠ARP协议了,后面会讲到。

稍微一般一点的情况是,主机通过若干个路由器(router)和目的主机连接。那么路由器就要通过ip包的信息来为ip包寻找到一个合适的目标来进行传递,比如合适的主机,或者合适的路由。路由器或者主机将会用如下的方式来处理某一个IP数据包

  1. 如果IP数据包的TTL(生命周期)以到,则该IP数据包就被抛弃。

  2. 搜索路由表,优先搜索匹配主机,如果能找到和IP地址完全一致的目标主机,则将该包发向目标主机

  3. 搜索路由表,如果匹配主机失败,则匹配同子网的路由器,这需要“子网掩码(1.3.)”的协助。如果找到路由器,则将该包发向路由器。

  4. 搜索路由表,如果匹配同子网路由器失败,则匹配同网号(第一章有讲解)路由器,如果找到路由器,则将该包发向路由器。

  5. 搜索陆游表,如果以上都失败了,就搜索默认路由,如果默认路由存在,则发包

  6. 如果都失败了,就丢掉这个包。

这再一次证明了,ip包是不可靠的。因为它不保证送达。


3. 子网寻址

IP地址的定义是网络号+主机号。但是现在所有的主机都要求子网编址,也就是说,把主机号在细分成子网号+主机号。最终一个IP地址就成为 网络号码+子网号+主机号。例如一个B类地址:210.30.109.134。一般情况下,这个IP地址的红色部分就是网络号,而蓝色部分就是子网号,绿色部分就是主机号。至于有多少位代表子网号这个问题上,这没有一个硬性的规定,取而代之的则是子网掩码,校园网相信大多数人都用过,在校园网的设定里面有一个255.255.255.0的东西,这就是子网掩码。子网掩码是由32bit的二进制数字序列,形式为是一连串的1和一连串的0,例如:255.255.255.0(二进制就是11111111.11111111.11111111.00000000)对于刚才的那个B类地址,因为210.30是网络号,那么后面的109.134就是子网号和主机号的组合,又因为子网掩码只有后八bit为0,所以主机号就是IP地址的后八个bit,就是134,而剩下的就是子网号码--109。


5.2 ICMP协议

1. ICMP协议介绍

前面讲到了,IP协议并不是一个可靠的协议,它不保证数据被送达,那么,自然的,保证数据送达的工作应该由其他的模块来完成。其中一个重要的模块就是ICMP(网络控制报文)协议。

当传送IP数据包发生错误--比如主机不可达,路由不可达等等,ICMP协议将会把错误信息封包,然后传送回给主机。给主机一个处理错误的机会,这 也就是为什么说建立在IP层以上的协议是可能做到安全的原因。ICMP数据包由8bit的错误类型和8bit的代码和16bit的校验和组成。而前 16bit就组成了ICMP所要传递的信息。书上的图6-3清楚的给出了错误类型和代码的组合代表的意思。

尽管在大多数情况下,错误的包传送应该给出ICMP报文,但是在特殊情况下,是不产生ICMP错误报文的。如下

  1. ICMP差错报文不会产生ICMP差错报文(出IMCP查询报文)(防止IMCP的无限产生和传送)

  2. 目的地址是广播地址或多播地址的IP数据报。

  3. 作为链路层广播的数据报。

  4. 不是IP分片的第一片。

  5. 源地址不是单个主机的数据报。这就是说,源地址不能为零地址、环回地址、广播地 址或多播地址。

虽然里面的一些规定现在还不是很明白,但是所有的这一切规定,都是为了防止产生ICMP报文的无限传播而定义的。

ICMP协议大致分为两类,一种是查询报文,一种是差错报文。其中查询报文有以下几种用途:

  1. ping查询(不要告诉我你不知道ping程序)

  2. 子网掩码查询(用于无盘工作站在初始化自身的时候初始化子网掩码)

  3. 时间戳查询(可以用来同步时间)


2. ICMP的应用--ping、Traceroute

ping这个单词源自声纳定位,而这个程序的作用也确实如此,它利用ICMP协议包来侦测另一个主机是否可达。原理是用类型码为0的ICMP发请 求,受到请求的主机则用类型码为8的ICMP回应。ping程序来计算间隔时间,并计算有多少个包被送达。用户就可以判断网络大致的情况。我们可以看到, ping给出来了传送的时间和TTL的数据。我给的例子不太好,因为走的路由少,有兴趣地可以ping一下国外的网站比如sf.net,就可以观察到一些 丢包的现象,而程序运行的时间也会更加的长。

ping还给我们一个看主机到目的主机的路由的机会。这是因为,ICMP的ping请求数据报在每经过一个路由器的时候,路由器都会把自己的ip放到该数 据报中。而目的主机则会把这个ip列表复制到回应icmp数据包中发回给主机。但是,无论如何,ip头所能纪录的路由列表是非常的有限。如果要观察路由, 我们还是需要使用更好的工具,就是要讲到的Traceroute(windows下面的名字叫做tracert)。

Traceroute是用来侦测主机到目的主机之间所经路由情况的重要工具,也是最便利的工具。前面说到,尽管ping工具也可以进行侦测,但是,因为ip头的限制,ping不能完全的记录下所经过的路由器。所以Traceroute正好就填补了这个缺憾。


6 TCP协议、UDP协议

TCP和UDP处在同一层---运输层,但是TCP和UDP最不同的地方是,TCP提供了一种可靠的数据传输服务,TCP是面向连接的,也就是说,利用TCP通信的两台主机首先要经历一个“拨打电话”的过程,等到通信准备结束才开始传输数据,最后结束通话。所以TCP要比UDP可靠的多,UDP是把数据直接发出去,而不管对方是不是在收信,就算是UDP无法送达,也不会产生ICMP差错报文。

6.1 TCP协议

6.1.0 TCP协议数据报头

TCP数据报头是封装在一个IP数据报文中的,基本长度为20个字节。下图为TCP协议数据报头的格式:

wKioL1OjnHqBkpYUAAAQODjWmvM428.gif

其中相关字段为:

Source Port、Destination Port:源端和目的端端口,16位长,标识出本地和远端所使用的端口。

Sequence Number:序列号,32位长,表示发送的数据顺序。

Acknowledgment Number:确认号,32位长。希望收到的下一个数据报的序列号。

Data Offset:4位长。表明TCP头中包含多少个32位字。

Reserved:保留字段。

Window:16位长。窗口大小字段表示在确认了字节之后还可以发送多少个字节。

ACK:ACK位置1表明确认号是合法的。如果ACK为0,那么数据报不包含确认信息,确认字段被省略。

PSH:表示是带有PUSH标志的数据。接收方因此请求数据报一到便可送往应用程序而不必等到缓冲区装满时才传送。

RST:用于复位由于主机崩溃或其它原因而出现的错误的连接。还可以用于拒绝非法的数据报或拒绝连接请求。

SYN:用于建立连接。

FIN:用于释放连接。

Checksum:校验和,16位长。是为了确保高可靠性而设置的。它校验头部、数据和伪TCP头部之和。

Options:可选项:0个或多个32位字。包括最大TCP载荷,窗口比例、选择重发数据报等选项。

Ugent Pointer:紧急指针。用到的时候值为1,用来处理避免TCP数据流中断


6.1.1 TCP协议采用三次握手建立一个连接

第一次握手:建立连接时,客户端发送syn包(syn=j)到服务器,并进入SYN_SEND状态,等待服务器确认;
第二次握手:服务器收到syn包,必须确认客户的SYN(ack=j+1),同时自己也发送一个SYN包(syn=k),即SYN+ACK包,此时服务器进入SYN_RECV状态;

第三次握手:客户端收到服务器的SYN+ACK包,向服务器发送确认包ACK(ack=k+1),此包发送完毕,客户端和服务器进入ESTABLISHED状态,完成三次握手。 完成三次握手,客户端与服务器开始传送数据.


6.1.2 采用四次挥手终止一个连接

由于TCP连接是全双工的,因此每个方向都必须单独进行关闭。这原则是当一方完成它的数据发送任务后就能发送一个FIN来终止这个方向的连接。收到一个 FIN只意味着这一方向上没有数据流动,一个TCP连接在收到一个FIN后仍能发送数据。首先进行关闭的一方将执行主动关闭,而另一方执行被动关闭。
 (1) TCP客户端发送一个FIN,用来关闭客户到服务器的数据传送(报文段4)。
 (2) 服务器收到这个FIN,它发回一个ACK,确认序号为收到的序号加1(报文段5)。和SYN一样,一个FIN将占用一个序号。
 (3) 服务器关闭客户端的连接,发送一个FIN给客户端(报文段6)。
 (4) 客户段发回ACK报文确认,并将确认序号设置为收到序号加1(报文段7)。

ps:3次握手发生在客户端 connect 时,而服务器accept 只是从内核取出已完成握手的队列中取出一个。


6.1.3 TCP协议状态转移

TCP协议规定,对于已经建立的连接,网络双方要进行四次挥手才能成功断开连接,如果缺少了其中某个步骤,将会使连接处于假死状态,连接本身占用的资源不会被释放。网络服务器程序要同时管理大量连接,所以很有必要保证无用连接完全断开,否则大量僵死的连接会浪费许多服务器资源。在众多TCP状态中,最值得注意的状态有两个:CLOSE_WAIT和TIME_WAIT。TCP的状态转移图如下,wKioL1M2j33jcFrRAAIEWNq8xXs887.jpg

1、LISTENING状态
           FTP服务启动后首先处于侦听(LISTENING)状态。            

2、ESTABLISHED状态
           ESTABLISHED的意思是建立连接。表示两台机器正在通信。

3、CLOSE_WAIT

   对方主动关闭连接或者网络异常导致连接中断,这时我方的状态会变成CLOSE_WAIT 此时我方要调用close()来使得连接正确关闭

4、TIME_WAIT

我方主动调用close()断开连接,收到对方确认后状态变为TIME_WAIT。TCP协议规定TIME_WAIT状态会一直持续2MSL(即两倍的分段最大生存期),以此来确保旧的连接状态不会对新连接产生影响。处于TIME_WAIT状态的连接占用的资源不会被内核释放,所以作为服务器,在可能的情况下,尽量不要主动断开连接,以减少TIME_WAIT状态造成的资源浪费。

   目前有一种避免TIME_WAIT资源浪费的方法,就是关闭socket的LINGER选项。但这种做法是TCP协议不推荐使用的,在某些情况下这个操作可能会带来错误。

5、SYN_SENT状态

SYN_SENT状态表示请求连接,当你要访问其它的计算机的服务时首先要发个同步信号给该端口,此时状态为SYN_SENT,如果连接成功了就变为 ESTABLISHED,此时SYN_SENT状态非常短暂。但如果发现SYN_SENT非常多且在向不同的机器发出,那你的机器可能中了冲击波或震荡波之类的病毒了。这类病毒为了感染别的计算机,它就要扫描别的计算机,在扫描的过程中对每个要扫描的计算机都要发出了同步请求,这也是出现许多 SYN_SENT的原因。


根据TCP协议定义的3次握手断开连接规定,发起socket主动关闭的一方 socket将进入TIME_WAIT状态,TIME_WAIT状态将持续2个MSL(Max Segment Lifetime),在Windows下默认为4分钟,即240秒,TIME_WAIT状态下的socket不能被回收使用. 具体现象是对于一个处理大量短连接的服务器,如果是由服务器主动关闭客户端的连接,将导致服务器端存在大量的处于TIME_WAIT状态的socket, 甚至比处于Established状态下的socket多的多,严重影响服务器的处理能力,甚至耗尽可用的socket,停止服务. TIME_WAIT是TCP协议用以保证被重新分配的socket不会受到之前残留的延迟重发报文影响的机制,是必要的逻辑保证。减少TIME_WAIT的等待时间的设置:

Windows 机器设置:
           在HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters,右键添加名为TcpTimedWaitDelay的DWORD键,设置为60,以缩短TIME_WAIT的等待时间


Linux(CentOS、Ubuntu等)机器设置:

vim /etc/sysctl.conf

编辑文件,加入以下内容:
net.ipv4.tcp_syncookies = 1
net.ipv4.tcp_tw_reuse = 1
net.ipv4.tcp_tw_recycle = 1
net.ipv4.tcp_fin_timeout = 30

然后执行 /sbin/sysctl -p 让参数生效。

注解:

net.ipv4.tcp_syncookies = 1 表示开启SYN Cookies。当出现SYN等待队列溢出时,启用cookies来处理,可防范少量SYN攻击,默认为0,表示关闭;


net.ipv4.tcp_tw_reuse = 1 表示开启重用。允许将TIME_WAIT sockets重新用于新的TCP连接,默认为0,表示关闭;


net.ipv4.tcp_tw_recycle = 1 表示开启TCP连接中TIME_WAIT sockets的快速回收,默认为0,表示关闭。


net.ipv4.tcp_fin_timeout 修改系�y默认的 TIMEOUT 时间



查看系统TCP连接资源命令:

netstat

netstat -n | awk '/^tcp/ {++S[$NF]} END {for(a in S) print a, S[a]}'

ESTABLISHED 5
TIME_WAIT 2
SYN_SENT 2


TCP协议中有TIME_WAIT这个状态主要有两个原因:

  • 防止上一次连接中的包,迷路后重新出现,影响新连接(经过2MSL,上一次连接中所有的重复包都会消失)

  • 可靠的关闭TCP连接。在主动关闭方发送的最后一个 ack(fin) ,有可能丢失,这时被动方会重新发 fin, 如果这时主动方处于 CLOSED 状态 ,就会响应 rst 而不是 ack。所以主动方要处于 TIME_WAIT 状态,而不能是 CLOSED 。


6.2 UDP协议

UDP是传输层协议,和TCP协议处于一个分层中,但是与TCP协议不同,UDP协议并不提供超时重传,出错重传等功能,也就是说其是不可靠的协议。

1. UDP协议头

1.1. UDP端口号

由于很多软件需要用到UDP协议,所以UDP协议必须通过某个标志用以区分不同的程序所需要的数据包。端口号的功能就在于此,例如某一个UDP程序A在系统中注册了3000端口,那么,以后从外面传进来的目的端口号为3000的UDP包都会交给该程序。端口号理论上可以有2^16这么多。因为它的长度是16个bit

1.2. UDP检验和

这是一个可选的选项,并不是所有的系统都对UDP数据包加以检验和数据(相对TCP协议的必须来说),但是RFC中标准要求,发送端应该计算检验和。

UDP检验和覆盖UDP协议头和数据,这和IP的检验和是不同的,IP协议的检验和只是覆盖IP数据头,并不覆盖所有的数据。UDP和TCP都包含一个伪首部,这是为了计算检验和而摄制的。伪首部甚至还包含IP地址这样的IP协议里面都有的信息,目的是让UDP两次检查数据是否已经正确到达目的地。如果发送端没有打开检验和选项,而接收端计算检验和有差错,那么UDP数据将会被悄悄的丢掉(不保证送达),而不产生任何差错报文。

1.3. UDP长度

UDP可以很长很长,可以有65535字节那么长。但是一般网络在传送的时候,一次一般传送不了那么长的协议(涉及到MTU的问题),就只好对数据分片,当然,这些是对UDP等上级协议透明的,UDP不需要关心IP协议层对数据如何分片,下一个章节将会稍微讨论一些分片的策略。

2. IP分片

IP在从上层接到数据以后,要根据IP地址来判断从那个接口发送数据(通过选路),并进行MTU的查询,如果数据大小超过MTU就进行数据分片。数据的分片是对上层和下层透明,而数据也只是到达目的地还会被重新组装,不过不用担心,IP层提供了足够的信息进行数据的再组装。

在IP头里面,16bit识别号唯一记录了一个IP包的ID,具有同一个ID的IP片将会被重新组装;而13位片偏移则记录了某IP片相对整个包的位置;而这两个表示中间的3bit标志则标示着该分片后面是否还有新的分片。这三个标示就组成了IP分片的所有信息,接受方就可以利用这些信息对IP数据进行重新组织(就算是后面的分片比前面的分片先到,这些信息也是足够了)。

因为分片技术在网络上被经常的使用,所以伪造IP分片包进行流氓攻击的软件和人也就层出不穷。

可以用Trancdroute程序来进行简单的MTU侦测。请参看教材。

3. UDP和ARP之间的交互式用

这是不常被人注意到的一个细节,这是针对一些系统地实现来说的。当ARP缓存还是空的时候。UDP在被发送之前一定要发送一个ARP请求来获得目的主机的MAC地址,如果这个UDP的数据包足够大,大到IP层一定要对其进行分片的时候,想象中,该UDP数据包的第一个分片会发出一个ARP查询请求,所有的分片都辉等到这个查询完成以后再发送。事实上是这样吗?

结果是,某些系统会让每一个分片都发送一个ARP查询,所有的分片都在等待,但是接受到第一个回应的时候,主机却只发送了最后一个数据片而抛弃了其他,这实在是让人匪夷所思。这样,因为分片的数据不能被及时组装,接受主机将会在一段时间内将永远无法组装的IP数据包抛弃,并且发送组装超时的ICMP报文(其实很多系统不产生这个差错),以保证接受主机自己的接收端缓存不被那些永远得不到组装的分片充满。

4. ICMP源站抑制差错

当目标主机的处理速度赶不上数据接收的速度,因为接受主机的IP层缓存会被占满,所以主机就会发出一个“我受不了”的一个ICMP报文。

5. UDP服务器设计

UDP协议的某些特性将会影响我们的服务器程序设计,大致总结如下:

  1. 关于客户IP和地址:服务器必须有根据客户IP地址和端口号判断数据包是否合法的能力(这似乎要求每一个服务器都要具备)

  2. 关于目的地址:服务器必须要有过滤广播地址的能力。

  3. 关于数据输入:通常服务器系统的每一个端口号都会和一块输入缓冲区对应,进来的输入根据先来后到的原则等待服务器的处理,所以难免会出现缓冲区溢出的问题,这种情况下,UDP数据包可能会被丢弃,而应用服务器程序本身并不知道这个问题。

  4. 服务器应该限制本地IP地址,就是说它应该可以把自己绑定到某一个网络接口的某一个端口上。


6.3 使用UDP和TCP协议的各种应用和应用层协议

       应用               应用层协议                   传输层协议

  1. 名字转换                DNS                   UDP、TCP

  2. 文件传送               TFTP                   UDP

  3. 路由选择协议            RIP                   UDP

  4. IP地址配置           BOOTP,DHCP               UDP

  5. 网络管理               SNMP                   UDP

  6. 远程文件服务器          NFS                   UDP

  7. IP电话                 专用协议               UDP

  8. 流式多媒体通信         专用协议               UDP

  9. 多播                   IGMP                   UDP

  10. 电子邮件               SMTP                   TCP

  11. 远程终端输入           TELNET                 TCP

  12. 万维网                 HTTP                   TCP

  13. 文件传送                FTP                   TCP


ps:DNS为什么既使用TCP又使用UDP?

DNS同时占用UDP和TCP端口53是公认的,这种单个应用协议同时使用两种传输协议的情况在TCP/IP栈也算是个另类。

首先了解一下TCP与UDP传送字节的长度限制:
  UDP报文的最大长度为512字节,而TCP则允许报文长度超过512字节。当DNS查询超过512字节时,协议的TC标志出现删除标志,这时则使用TCP发送。通常传统的UDP报文一般不会大于512字节。

区域传送时使用TCP,主要有一下两点考虑:
1.辅域名服务器会定时(一般时3小时)向主域名服务器进行查询以便了解数据是否有变动。如有变动,则会执行一次区域传送,进行数据同步。区域传送将使用TCP而不是UDP,因为数据同步传送的数据量比一个请求和应答的数据量要多得多。
2.TCP是一种可靠的连接,保证了数据的准确性。

域名解析时使用UDP协议:
客户端向DNS服务器查询域名,一般返回的内容都不超过512字节,用UDP传输即可。不用经过TCP三次握手,这样DNS服务器负载更低,响应更快。虽然从理论上说,客户端也可以指定向DNS服务器查询的时候使用TCP,但事实上,很多DNS服务器进行配置的时候,仅支持UDP查询包。  

                                                                                                                   ――Rango Chen


你可能感兴趣的:(计算机网络,tcp/ip协议,IP协议)