图像处理之Harris角度检测算法

图像处理之Harris角度检测算法

Harris角度检测是通过数学计算在图像上发现角度特征的一种算法,而且其具有旋转不

性的特质。OpenCV中的Shi-Tomasi角度检测就是基于Harris角度检测改进算法。

基本原理:

角度是一幅图像上最明显与重要的特征,对于一阶导数而言,角度在各个方向的变化是

最大的,而边缘区域在只是某一方向有明显变化。一个直观的图示如下:


数学原理:

基本数学公式如下:


其中W(x, y)表示移动窗口,I(x, y)表示像素灰度值强度,范围为0~255。根据泰勒级数

计算一阶到N阶的偏导数,最终得到一个Harris矩阵公式:


根据Harris的矩阵计算矩阵特征值,然后计算Harris角度响应值:


其中K为系数值,通常取值范围为0.04 ~ 0.06之间。

算法详细步骤

第一步:计算图像X方向与Y方向的一阶高斯偏导数Ix与Iy

第二步:根据第一步结果得到Ix^2 , Iy^2与Ix*Iy值

第三步:高斯模糊第二步三个值得到Sxx, Syy, Sxy

第四部:定义每个像素的Harris矩阵,计算出矩阵的两个特质值

第五步:计算出每个像素的R值

第六步:使用3X3或者5X5的窗口,实现非最大值压制

第七步:根据角度检测结果计算,最提取到的关键点以绿色标记,显示在原图上。

程序关键代码解读

第一步计算一阶高斯偏导数的Ix与Iy值代码如下:

		filter.setDirectionType(GaussianDerivativeFilter.X_DIRECTION); 		BufferedImage xImage = filter.filter(grayImage, null); 		getRGB( xImage, 0, 0, width, height, inPixels ); 		extractPixelData(inPixels, GaussianDerivativeFilter.X_DIRECTION, height, width); 		 		filter.setDirectionType(GaussianDerivativeFilter.Y_DIRECTION); 		BufferedImage yImage = filter.filter(grayImage, null); 		getRGB( yImage, 0, 0, width, height, inPixels ); 		extractPixelData(inPixels, GaussianDerivativeFilter.Y_DIRECTION, height, width);

关于如何计算高斯一阶与二阶偏导数请看这里:

http://blog.csdn.net/jia20003/article/details/16369143

http://blog.csdn.net/jia20003/article/details/7664777

第三步:分别对第二步计算出来的三个值,单独进行高斯

模糊计算,代码如下:

	private void calculateGaussianBlur(int width, int height) {         int index = 0;         int radius = (int)window_radius;         double[][] gw = get2DKernalData(radius, sigma);         double sumxx = 0, sumyy = 0, sumxy = 0;         for(int row=0; row<height; row++) {         	for(int col=0; col<width; col++) {        		         		for(int subrow =-radius; subrow<=radius; subrow++)         		{         			for(int subcol=-radius; subcol<=radius; subcol++)         			{         				int nrow = row + subrow;         				int ncol = col + subcol;         				if(nrow >= height || nrow < 0)         				{         					nrow = 0;         				}         				if(ncol >= width || ncol < 0)         				{         					ncol = 0;         				}         				int index2 = nrow * width + ncol;         				HarrisMatrix whm = harrisMatrixList.get(index2);         				sumxx += (gw[subrow + radius][subcol + radius] * whm.getXGradient());         				sumyy += (gw[subrow + radius][subcol + radius] * whm.getYGradient());         				sumxy += (gw[subrow + radius][subcol + radius] * whm.getIxIy());         			}         		}         		index = row * width + col;         		HarrisMatrix hm = harrisMatrixList.get(index);         		hm.setXGradient(sumxx);         		hm.setYGradient(sumyy);         		hm.setIxIy(sumxy);         		         		// clean up for next loop         		sumxx = 0;         		sumyy = 0;         		sumxy = 0;         	}         }		 	}

第六步:非最大信号压制(non-max value suppression)

这个在边源检测中是为了得到一个像素宽的边缘,在这里则

是为了得到准确的一个角点像素,去掉非角点值。代码如下:

	/*** 	 * we still use the 3*3 windows to complete the non-max response value suppression 	 */ 	private void nonMaxValueSuppression(int width, int height) {         int index = 0;         int radius = (int)window_radius;         for(int row=0; row<height; row++) {         	for(int col=0; col<width; col++) {         		index = row * width + col;         		HarrisMatrix hm = harrisMatrixList.get(index);         		double maxR = hm.getR();         		boolean isMaxR = true;         		for(int subrow =-radius; subrow<=radius; subrow++)         		{         			for(int subcol=-radius; subcol<=radius; subcol++)         			{         				int nrow = row + subrow;         				int ncol = col + subcol;         				if(nrow >= height || nrow < 0)         				{         					nrow = 0;         				}         				if(ncol >= width || ncol < 0)         				{         					ncol = 0;         				}         				int index2 = nrow * width + ncol;         				HarrisMatrix hmr = harrisMatrixList.get(index2);         				if(hmr.getR() > maxR)         				{         					isMaxR = false;         				}         			}       			         		}         		if(isMaxR)         		{         			hm.setMax(maxR);         		}         	}         } 		 	}

运行效果:


程序完整源代码:

package com.gloomyfish.image.harris.corner;  import java.awt.image.BufferedImage; import java.util.ArrayList; import java.util.List;  import com.gloomyfish.filter.study.GrayFilter;  public class HarrisCornerDetector extends GrayFilter { 	private GaussianDerivativeFilter filter; 	private List<HarrisMatrix> harrisMatrixList; 	private double lambda = 0.04; // scope : 0.04 ~ 0.06 	 	// i hard code the window size just keep it' size is same as  	// first order derivation Gaussian window size 	private double sigma = 1; // always 	private double window_radius = 1; // always 	public HarrisCornerDetector() { 		filter = new GaussianDerivativeFilter(); 		harrisMatrixList = new ArrayList<HarrisMatrix>(); 	}  	@Override 	public BufferedImage filter(BufferedImage src, BufferedImage dest) { 		int width = src.getWidth();         int height = src.getHeight();         initSettings(height, width);         if ( dest == null )             dest = createCompatibleDestImage( src, null );                  BufferedImage grayImage = super.filter(src, null);         int[] inPixels = new int[width*height];          		// first step  - Gaussian first-order Derivatives (3 × 3) - X - gradient, (3 × 3) - Y - gradient 		filter.setDirectionType(GaussianDerivativeFilter.X_DIRECTION); 		BufferedImage xImage = filter.filter(grayImage, null); 		getRGB( xImage, 0, 0, width, height, inPixels ); 		extractPixelData(inPixels, GaussianDerivativeFilter.X_DIRECTION, height, width); 		 		filter.setDirectionType(GaussianDerivativeFilter.Y_DIRECTION); 		BufferedImage yImage = filter.filter(grayImage, null); 		getRGB( yImage, 0, 0, width, height, inPixels ); 		extractPixelData(inPixels, GaussianDerivativeFilter.Y_DIRECTION, height, width); 				 		// second step - calculate the Ix^2, Iy^2 and Ix^Iy 		for(HarrisMatrix hm : harrisMatrixList) 		{ 			double Ix = hm.getXGradient(); 			double Iy = hm.getYGradient(); 			hm.setIxIy(Ix * Iy); 			hm.setXGradient(Ix*Ix); 			hm.setYGradient(Iy*Iy); 		} 		 		// 基于高斯方法,中心点化窗口计算一阶导数和,关键一步 SumIx2, SumIy2 and SumIxIy, 高斯模糊 		calculateGaussianBlur(width, height);  		// 求取Harris Matrix 特征值  		// 计算角度相应值R R= Det(H) - lambda * (Trace(H))^2 		harrisResponse(width, height); 		 		// based on R, compute non-max suppression 		nonMaxValueSuppression(width, height); 		 		// match result to original image and highlight the key points 		int[] outPixels = matchToImage(width, height, src); 		 		// return result image 		setRGB( dest, 0, 0, width, height, outPixels ); 		return dest; 	} 	 	 	private int[] matchToImage(int width, int height, BufferedImage src) { 		int[] inPixels = new int[width*height];         int[] outPixels = new int[width*height];         getRGB( src, 0, 0, width, height, inPixels );         int index = 0;         for(int row=0; row<height; row++) {         	int ta = 0, tr = 0, tg = 0, tb = 0;         	for(int col=0; col<width; col++) {         		index = row * width + col;         		ta = (inPixels[index] >> 24) & 0xff;                 tr = (inPixels[index] >> 16) & 0xff;                 tg = (inPixels[index] >> 8) & 0xff;                 tb = inPixels[index] & 0xff;                 HarrisMatrix hm = harrisMatrixList.get(index);                 if(hm.getMax() > 0)                 {                 	tr = 0;                 	tg = 255; // make it as green for corner key pointers                 	tb = 0;                 	outPixels[index] = (ta << 24) | (tr << 16) | (tg << 8) | tb;                 }                 else                 {                 	outPixels[index] = (ta << 24) | (tr << 16) | (tg << 8) | tb;                	                 }                          	}         } 		return outPixels; 	} 	/*** 	 * we still use the 3*3 windows to complete the non-max response value suppression 	 */ 	private void nonMaxValueSuppression(int width, int height) {         int index = 0;         int radius = (int)window_radius;         for(int row=0; row<height; row++) {         	for(int col=0; col<width; col++) {         		index = row * width + col;         		HarrisMatrix hm = harrisMatrixList.get(index);         		double maxR = hm.getR();         		boolean isMaxR = true;         		for(int subrow =-radius; subrow<=radius; subrow++)         		{         			for(int subcol=-radius; subcol<=radius; subcol++)         			{         				int nrow = row + subrow;         				int ncol = col + subcol;         				if(nrow >= height || nrow < 0)         				{         					nrow = 0;         				}         				if(ncol >= width || ncol < 0)         				{         					ncol = 0;         				}         				int index2 = nrow * width + ncol;         				HarrisMatrix hmr = harrisMatrixList.get(index2);         				if(hmr.getR() > maxR)         				{         					isMaxR = false;         				}         			}       			         		}         		if(isMaxR)         		{         			hm.setMax(maxR);         		}         	}         } 		 	} 	 	/*** 	 * 计算两个特征值,然后得到R,公式如下,可以自己推导,关于怎么计算矩阵特征值,请看这里: 	 * http://www.sosmath.com/matrix/eigen1/eigen1.html 	 *  	 * 	A = Sxx; 	 *	B = Syy; 	 *  C = Sxy*Sxy*4; 	 *	lambda = 0.04; 	 *	H = (A*B - C) - lambda*(A+B)^2;      * 	 * @param width 	 * @param height 	 */ 	private void harrisResponse(int width, int height) {         int index = 0;         for(int row=0; row<height; row++) {         	for(int col=0; col<width; col++) {         		index = row * width + col;         		HarrisMatrix hm = harrisMatrixList.get(index);         		double c =  hm.getIxIy() * hm.getIxIy();         		double ab = hm.getXGradient() * hm.getYGradient();         		double aplusb = hm.getXGradient() + hm.getYGradient();         		double response = (ab -c) - lambda * Math.pow(aplusb, 2);         		hm.setR(response);         	}         }		 	}  	private void calculateGaussianBlur(int width, int height) {         int index = 0;         int radius = (int)window_radius;         double[][] gw = get2DKernalData(radius, sigma);         double sumxx = 0, sumyy = 0, sumxy = 0;         for(int row=0; row<height; row++) {         	for(int col=0; col<width; col++) {        		         		for(int subrow =-radius; subrow<=radius; subrow++)         		{         			for(int subcol=-radius; subcol<=radius; subcol++)         			{         				int nrow = row + subrow;         				int ncol = col + subcol;         				if(nrow >= height || nrow < 0)         				{         					nrow = 0;         				}         				if(ncol >= width || ncol < 0)         				{         					ncol = 0;         				}         				int index2 = nrow * width + ncol;         				HarrisMatrix whm = harrisMatrixList.get(index2);         				sumxx += (gw[subrow + radius][subcol + radius] * whm.getXGradient());         				sumyy += (gw[subrow + radius][subcol + radius] * whm.getYGradient());         				sumxy += (gw[subrow + radius][subcol + radius] * whm.getIxIy());         			}         		}         		index = row * width + col;         		HarrisMatrix hm = harrisMatrixList.get(index);         		hm.setXGradient(sumxx);         		hm.setYGradient(sumyy);         		hm.setIxIy(sumxy);         		         		// clean up for next loop         		sumxx = 0;         		sumyy = 0;         		sumxy = 0;         	}         }		 	} 	 	public double[][] get2DKernalData(int n, double sigma) { 		int size = 2*n +1; 		double sigma22 = 2*sigma*sigma; 		double sigma22PI = Math.PI * sigma22; 		double[][] kernalData = new double[size][size]; 		int row = 0; 		for(int i=-n; i<=n; i++) { 			int column = 0; 			for(int j=-n; j<=n; j++) { 				double xDistance = i*i; 				double yDistance = j*j; 				kernalData[row][column] = Math.exp(-(xDistance + yDistance)/sigma22)/sigma22PI; 				column++; 			} 			row++; 		} 		 //		for(int i=0; i<size; i++) { //			for(int j=0; j<size; j++) { //				System.out.print("\t" + kernalData[i][j]); //			} //			System.out.println(); //			System.out.println("\t ---------------------------"); //		} 		return kernalData; 	}  	private void extractPixelData(int[] pixels, int type, int height, int width) 	{         int index = 0;         for(int row=0; row<height; row++) {         	int ta = 0, tr = 0, tg = 0, tb = 0;         	for(int col=0; col<width; col++) {         		index = row * width + col;         		ta = (pixels[index] >> 24) & 0xff;                 tr = (pixels[index] >> 16) & 0xff;                 tg = (pixels[index] >> 8) & 0xff;                 tb = pixels[index] & 0xff;                 HarrisMatrix matrix = harrisMatrixList.get(index);                 if(type == GaussianDerivativeFilter.X_DIRECTION)                 {                 	matrix.setXGradient(tr);                 }                 if(type == GaussianDerivativeFilter.Y_DIRECTION)                 {                 	matrix.setYGradient(tr);                 }         	}         } 	} 	 	private void initSettings(int height, int width) 	{         int index = 0;         for(int row=0; row<height; row++) {         	for(int col=0; col<width; col++) {         		index = row * width + col;         		HarrisMatrix matrix = new HarrisMatrix();                 harrisMatrixList.add(index, matrix);         	}         } 	}  } 
最后注意:

我是把彩色图像变为灰度图像来计算,这个计算量小点

处理容易点,此外很多图像处理软件都会用标记来显示

关键点像素,我没有,只是将关键点像素改为绿色。

所以可以从这些方面有很大的提高空间。

你可能感兴趣的:(java,算法,opencv,图像处理)