Tachyon基本使用09-----Running Spark on Tachyon

一、配置scala环境

1.实验环境

Node1      192.168.1.1     master
Node2      192.168.1.2     worker
Node3      192.168.1.3     worker

2.检查java环境(每个节点)

# java -version 
java version "1.7.0_05"
Java(TM) SE Runtime
Environment (build 1.7.0_05-b05)
Java HotSpot(TM) 64-Bit
Server VM (build 23.1-b03, mixed mode)
#

3.下载并解压scala

[root@node1 soft]# tar -zxf scala-2.11.2.tgz -C /usr/local/
[root@node1 soft]# ln -s /usr/local/scala-2.11.2/ /usr/local/scala
[root@node1 soft]#

4.配置scala环境

[root@node1 soft]# cat /etc/profile.d/scala.sh
SCALA_HOME=/usr/local/scala
PATH=$SCALA_HOME/bin:$PATH
[root@node1 soft]# . /etc/profile.d/scala.sh
[root@node1 soft]#

5.测试scala环境

[root@node1 soft]# scala -version
Scala code runner
version 2.11.2 -- Copyright 2002-2013, LAMP/EPFL
[root@node1 soft]#

6.scala环境部署到其它节点

[root@node1 soft]# scp -r/usr/local/scala-2.11.2/ node2:/usr/local/
[root@node1 soft]# scp-r /usr/local/scala-2.11.2/ node3:/usr/local/
[root@node1 soft]# sshnode2 ln -s /usr/local/scala-2.11.2/ /usr/local/scala
[root@node1 soft]# sshnode3 ln -s /usr/local/scala-2.11.2/ /usr/local/scala
[root@node1 soft]# scp/etc/profile.d/scala.sh node2:/etc/profile.d/
scala.sh                                      100%   55    0.1KB/s   00:00    
[root@node1 soft]# scp/etc/profile.d/scala.sh node3:/etc/profile.d/
scala.sh                                      100%   55    0.1KB/s   00:00    
[root@node1 soft]#

二、安装Spark集群

1.下载并解压spark

[root@node1 soft]# tar -zxf spark-0.9.1-bin-hadoop2.tgz -C /usr/local/
[root@node1 soft]# ln -s /usr/local/spark-0.9.1-bin-hadoop2/ /usr/local/spark
[root@node1 soft]#

2.配置spark环境变量

[root@node1 soft]# cat /etc/profile.d/spark.sh
SPARK_HOME=/usr/local/spark
PATH=$SPARK_HOME/bin:$PATH
[root@node1 soft]# . /etc/profile.d/spark.sh
[root@node1 soft]#

3.修改spark-env.sh配置文件

[root@node1 conf]# pwd /usr/local/spark/conf
[root@node1 conf]# cp spark-env.sh.template spark-env.sh
[root@node1 conf]#  cat spark-env.sh|grep -v ^$|grep -v ^#
exportSCALA_HOME=/usr/local/scala
exportJAVA_HOME=/usr/java/default
exportSPARK_MASTER_IP=192.168.1.1
exportSPARK_WORKER_MEMORY=512m
exportSPARK_WORKER_PORT=7077
[root@node1 conf]#

4.配置slaves

[root@node1 conf]# pwd /usr/local/spark/conf
[root@node1 conf]# cat slaves 
# A Spark Worker will be
started on each of the machines listed below.
node1
node2
node3
[root@node1 conf]#

5.Spark的程序文件和配置文件拷贝分发到从节点机器上

[root@node1 ~]# scp -r/usr/local/spark-0.9.1-bin-hadoop2/ node2:/usr/local/
[root@node1 ~]# scp -r/usr/local/spark-0.9.1-bin-hadoop2/ node3:/usr/local/
[root@node1 ~]# sshnode2 ln -s /usr/local/spark-0.9.1-bin-hadoop2/ /usr/local/spark
[root@node1 ~]# sshnode3 ln -s /usr/local/spark-0.9.1-bin-hadoop2/ /usr/local/spark
[root@node1 ~]# scp/etc/profile.d/spark.sh node2:/etc/profile.d/
spark.sh                                      100%   55    0.1KB/s   00:00    
[root@node1 ~]# scp/etc/profile.d/spark.sh node3:/etc/profile.d/
spark.sh                                      100%   55    0.1KB/s   00:00    
[root@node1 ~]#

6.启动Spark集群

[root@node1 ~]# cd /usr/local/spark
[root@node1 spark]#sbin/start-all.sh

7.查看spark进程

[root@node1 spark]# jps
32903 Master
33071 Jps
[root@node1 spark]# ssh
node2 jps
20357 Jps
20297 Worker
[root@node1 spark]# ssh
node3 jps
12596 Jps
12538 Worker
[root@node1 spark]#

8.查看Spark Web UI

wKiom1Q93SCCfsfIAAJBQ5iiQWg145.jpg

三、配置Spark结合Tachyon

1.修改spark-env.sh添加Tachyon客户端jar包环境变量

export SPARK_CLASSPATH=/usr/local/tachyon/client/target/tachyon-client-0.5.0-jar-with-dependencies.jar:$SPARK_CLASSPATH

2.创建并配置core-site.xml文件

[root@node1 conf]# pwd /usr/local/spark/conf
[root@node1 conf]# catcore-site.xml 
<configuration>
  <property>
      <name>fs.tachyon.impl</name>
     <value>tachyon.hadoop.TFS</value>
  </property>
</configuration>
[root@node1 conf]#

3.同步修改的配置文件到其它节点

[root@node1 conf]# scpcore-site.xml node2:/usr/local/spark/conf/
core-site.xml                                                                                                                         100%  135    0.1KB/s   00:00    
[root@node1 conf]# scpcore-site.xml node3:/usr/local/spark/conf/
core-site.xml                                                                                                                        100%  135     0.1KB/s  00:00    
[root@node1 conf]# scpspark-env.sh node2:/usr/local/spark/conf/
spark-env.sh                                                                                                                          100%1498     1.5KB/s   00:00   
[root@node1 conf]# scpspark-env.sh node3:/usr/local/spark/conf/
spark-env.sh                                                                                                                          100%1498     1.5KB/s   00:00   
[root@node1 conf]#

4.启动tachyon

[root@node1 ~]#tachyon-start.sh all Mount

5.启动Spark

[root@node1 ~]# /usr/local/spark/sbin/start-all.sh

6.测试spark

[root@node1 conf]#MASTER=spark://192.168.1.1:7077 spark-shell
scala> val s =sc.textFile("tachyon://node1:19998/gcf")
scala> s.count
scala>s.saveAsTextFile("tachyon://node1:19998/count")

7.查看Spark保存的文件

[root@node1 spark]#tachyon tfs ls /count
375.00 B  10-09-2014 16:40:17:485  In Memory     /count/part-00000
369.00 B  10-09-2014 16:40:18:218  In Memory     /count/part-00001
0.00 B    10-09-2014 16:40:18:548  In Memory     /count/_SUCCESS
[root@node1 spark]#

四、配置Spark结合Tachyon HA

1.修改core-site.xml添加一个属性

<property>
    <name>fs.tachyon-ft.impl</name>
   <value>tachyon.hadoop.TFS</value>
</property>

2.修改spark-env.sh

exportSPARK_JAVA_OPTS="
 -Dtachyon.zookeeper.address=node1:2181,node2:2181,node3:2181
  -Dtachyon.usezookeeper=true
  $SPARK_JAVA_OPTS
"

3.复制修改的配置文件到其它节点

[root@node1 conf]# scpcore-site.xml node2:/usr/local/spark/conf/
core-site.xml                                                                                                                         100%  252    0.3KB/s   00:00    
[root@node1 conf]# scpcore-site.xml node3:/usr/local/spark/conf/
core-site.xml                                                                                                                        100%  252    0.3KB/s   00:00    
[root@node1 conf]# scpspark-env.sh node2:/usr/local/spark/conf/
spark-env.sh                                                                                                                         100%1637     1.6KB/s   00:00   
[root@node1 conf]# scpspark-env.sh node3:/usr/local/spark/conf/
spark-env.sh                                                                                                                         100% 1637     1.6KB/s  00:00    
[root@node1 conf]#

4.重启Spark

[root@node1 spark]# pwd 
/usr/local/spark
[root@node1 spark]#sbin/start-all.sh

5.测试

[root@node1 spark]#MASTER=spark://192.168.1.1:7077 spark-shell
scala>  val s = sc.textFile("tachyon-ft://activeHost:19998/gcf")
scala>s.saveAsTextFile("tachyon-ft://activeHost:19998/count-ft")




你可能感兴趣的:(hadoop,spark,Tachyon)