统计之 - T检验

T检验,亦称student t检验(Student'st test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料。t检验是t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。它与z检验、卡方检验并列。


T检验分为三种方法:

  1. 单一样本t检验One-samplet test),是用来比较一组数据的平均值和一个数值有无差异。例如,你选取了5个人,测定了他们的身高,要看这五个人的身高平均值是否高于、低于还是等于1.70m,就需要用这个检验方法

  2. 配对样本t检验paired-samplest test),是用来看一组样本在处理前后的平均值有无差异。比如,你选取了5个人,分别在饭前和饭后测量了他们的体重,想检测吃饭对他们的体重有无影响,就需要用这个t检验。注意,配对样本t检验要求严格配对,也就是说,每一个人的饭前体重和饭后体重构成一对

  3. 独立样本t检验independentt test),是用来看两组数据的平均值有无差异。比如,你选取了55女,想看男女之间身高有无差异,这样,男的一组,女的一组,这两个组之间的身高平均值的大小比较可用这种方法


总之,选取哪种t检验方法是由你的数据特点和你的结果要求来决定的。t检验会计算出一个统计量来,这个统计量就是t值, spss根据这个t值来计算sig值。因此,你可以认为t值是一个中间过程产生的数据,不必理他,你只需要看sig值就可以了。sig值是一个最终值,也是t检验的最重要的值。sig值的意思就是显著性(significance),它的意思是说,平均值是在百分之几的几率上相等的。一般将这个sig值与0.05相比较,如果它大于0.05,说明平均值在大于5%的几率上是相等的,而在小于95%的几率上不相等。我们认为平均值相等的几率还是比较大的,说明差异是不显著的,从而认为两组数据之间平均值是相等的。如果它小于0.05,说明平均值在小于5%的几率上是相等的,而在大于95%的几率上不相等。我们认为平均值相等的几率还是比较小的,说明差异是显著的,从而认为两组数据之间平均值是不相等的。


你可能感兴趣的:(t检验)