Python获取股票历史数据和收盘数据的代码实现


       各种股票软件,例如通达信、同花顺、大智慧,都可以实时查看股票价格和走势,做一些简单的选股和定量分析,但是如果你想做更复杂的分析,例如回归分析、关联分析等就有点捉襟见肘,所以最好能够获取股票历史及实时数据并存储到数据库,然后再通过其他工具,例如SPSS、SAS、EXCEL或者其他高级编程语言连接数据库获取股票数据进行定量分析,这样就能实现更多目的了。

      为此,首先需要找到可以获取股票数据的接口,新浪、雅虎、腾讯等都有接口可以实时获取股票数据,历史数据选择了雅虎接口,收盘数据选择了腾讯接口。

    (1)项目结构

wKioL1YyHhfTV5ZQAAE6J6--0Gg957.jpg

    (2)数据库连接池

     connectionpool.py

#-*- coding: UTF-8 -*- 
'''
create a connection pool
'''
from DBUtils import PooledDB
import MySQLdb
import string
maxconn = 30            #最大连接数
mincached = 10           #最小空闲连接
maxcached = 20          #最大空闲连接
maxshared = 30          #最大共享连接
connstring="root#root#127.0.0.1#3307#pystock#utf8" #数据库地址
dbtype = "mysql"                   #选择mysql作为存储数据库
def createConnectionPool(connstring, dbtype):
    db_conn = connstring.split("#");
    if dbtype=='mysql':
        try:
            pool = PooledDB.PooledDB(MySQLdb, user=db_conn[0],passwd=db_conn[1],host=db_conn[2],port=string.atoi(db_conn[3]),db=db_conn[4],charset=db_conn[5], mincached=mincached,maxcached=maxcached,maxshared=maxshared,maxconnections=maxconn)
            return pool
        except Exception, e:
            raise Exception,'conn datasource Excepts,%s!!!(%s).'%(db_conn[2],str(e))
            return None
pool = createConnectionPool(connstring, dbtype)

 
    (3)数据库操作

     DBOperator.py

#-*- coding: UTF-8 -*- 
''' 
Created on 2015-3-13
@author: Casey
'''
import MySQLdb
from stockmining.stocks.setting import LoggerFactory
import connectionpool
class DBOperator(object):
    
    def __init__(self):
        self.logger = LoggerFactory.getLogger('DBOperator')
        #self.conn = None
        
    def connDB(self):
        #单连接
        #self.conn=MySQLdb.connect(host="127.0.0.1",user="root",passwd="root",db="pystock",port=3307,charset="utf8")  
        #连接池中获取连接
        self.conn=connectionpool.pool.connection()
        return self.conn
    def closeDB(self):
        if(self.conn != None):
            self.conn.close()  
    
    
    def insertIntoDB(self, table, dict):
        try:
            if(self.conn != None):
                cursor = self.conn.cursor()
            else:
                raise MySQLdb.Error('No connection')
           
            sql = "insert into " + table + "("
            param = []
            for key in dict:
                sql += key + ','
                param.append(dict.get(key))
            param = tuple(param)
            sql = sql[:-1] + ") values("
            for i in range(len(dict)):
                sql += "%s,"
            sql = sql[:-1] + ")"
        
            self.logger.debug(sql % param)    
            n = cursor.execute(sql, param)  
            self.conn.commit()  
            cursor.close()  
        except MySQLdb.Error,e:
            self.logger.error("Mysql Error %d: %s" % (e.args[0], e.args[1]))
            self.conn.rollback()
    def execute(self, sql):
        try:
            if(self.conn != None):
                cursor = self.conn.cursor()
            else:
                raise MySQLdb.Error('No connection')
            
            n = cursor.execute(sql)
            return n
        except MySQLdb.Error,e:
            self.logger.error("Mysql Error %d: %s" % (e.args[0], e.args[1]))
 
    def findBySQL(self, sql):
        try:
            if(self.conn != None):
                cursor = self.conn.cursor()
            else:
                raise MySQLdb.Error('No connection')
            
            cursor.execute(sql)
            rows = cursor.fetchall() 
            return rows
        except MySQLdb.Error,e:
            self.logger.error("Mysql Error %d: %s" % (e.args[0], e.args[1]))
    
    def findByCondition(self, table, fields, wheres):
        try:
            if(self.conn != None):
                cursor = self.conn.cursor()
            else:
                raise MySQLdb.Error('No connection')
            
            sql = "select " 
            for field in fields:
                sql += field + ","
            sql = sql[:-1] + " from " + table + " where "   
            
            param = []
            values = ''
            for where in wheres:
                sql += where.key + "='%s' and " 
                param.append(where.value)
            param = tuple(param)   
            self.logger.debug(sql)    
            
            n = cursor.execute(sql[:-5] % param)  
            self.conn.commit()  
            cursor.close()  
        except MySQLdb.Error,e:
            self.logger.error("Mysql Error %d: %s" % (e.args[0], e.args[1]))

     
    (4)日志

   LoggerFactory.py

#-*- coding: UTF-8 -*- 
'''
Created on 2015-3-11
@author: Casey
'''
import logging
import time
'''
传入名称
'''
def getLogger(name):
        now = time.strftime('%Y-%m-%d %H:%M:%S')
        
        logging.basicConfig(
            level    = logging.DEBUG,
            format   = now +" : " + name + ' LINE %(lineno)-4d  %(levelname)-8s %(message)s',
            datefmt  = '%m-%d %H:%M',
            filename =  "d:\\stocks\stock.log",
            filemode = 'w');
                    
        console = logging.StreamHandler();
        console.setLevel(logging.DEBUG);
        formatter = logging.Formatter(name + ': LINE %(lineno)-4d : %(levelname)-8s %(message)s');
        console.setFormatter(formatter);
        
        logger = logging.getLogger(name)
        logger.addHandler(console); 
        return logger
    
if __name__ == '__main__':
    getLogger("www").debug("www")


   (5)获取股票历史数据

      采用雅虎的接口:http://ichart.yahoo.com/table.csv?s=<string>&a=<int>&b=<int>&c=<int>&d=<int>&e=<int>&f=<int>&g=d&ignore=.csv

    参 数:s ― 股票名称

           a ― 起始时间,月

           b ― 起始时间,日

           c ― 起始时间,年

           d ― 结束时间,月

           e ― 结束时间,日

           f ― 结束时间,年

           g― 时间周期。

          (一定注意月份参数,其值比真实数据-1。如需要9月数据,则写为08。)

    示例 查询浦发银行2010.09.25 �C 2010.10.8之间日线数据

    http://ichart.yahoo.com/table.csv?s=600000.SS&a=08&b=25&c=2010&d=09&e=8&f=2010&g=d

  返回:

     Date,Open,High,Low,Close,Volume,Adj Close

    2010-09-30,12.37,12.99,12.32,12.95,76420500,12.95

    2010-09-29,12.20,12.69,12.12,12.48,79916400,12.48

    2010-09-28,12.92,12.92,12.57,12.58,63988100,12.58

    2010-09-27,13.00,13.02,12.89,12.94,43203600,12.94


   因为数据量比较大,需要跑很久,所以也可以考虑多线程模式来获取相关数据,单线程模式:

#-*- coding: UTF-8 -*- 
'''
Created on 2015-3-1
@author: Casey
'''
import urllib
import re
import sys
from setting import params
import urllib2
from db import *
dbOperator = DBOperator()
table = "stock_quote_yahoo"
'''查找指定日期股票流量'''
def isStockExitsInDate(table, stock, date):
    sql = "select * from " + table + " where code = '%d' and date='%s'" % (stock, date)
    n = dbOperator.execute(sql) 
    if n >= 1:
        return True 
    
def getHistoryStockData(code, dataurl):
    try:
        r = urllib2.Request(dataurl)
        try:
            stdout = urllib2.urlopen(r, data=None, timeout=3)
        except Exception,e:
            print ">>>>>> Exception: " +str(e)  
            return None
        
        stdoutInfo = stdout.read().decode(params.codingtype).encode('utf-8') 
        tempData = stdoutInfo.replace('"', '')
        stockQuotes = []
        if tempData.find('404') != -1:  stockQuotes = tempData.split("\n")
      
        stockDetail = {}
        for stockQuote in stockQuotes:
            stockInfo = stockQuote.split(",")
            if len(stockInfo) == 7 and stockInfo[0]!='Date':
                if not isStockExitsInDate(table, code, stockInfo[0]):
                   stockDetail["date"] = stockInfo[0]
                   stockDetail["open"]  = stockInfo[1]  #开盘
                   stockDetail["high"]    = stockInfo[2]  #最高
                   stockDetail["low"]    = stockInfo[3]  #最低
                   stockDetail["close"] = stockInfo[4]  #收盘
                   stockDetail["volume"] = stockInfo[5]  #交易量
                   stockDetail["adj_close"] = stockInfo[6] #收盘adj价格
                   stockDetail["code"] = code        #代码
                   dbOperator.insertIntoDB(table, stockDetail) 
        result = tempData
    except Exception as err:
        print ">>>>>> Exception: " + str(dataurl) + " " + str(err)
    else:
        return result
    finally:
        None
        
def get_stock_history():
    #沪市2005-2015历史数据
    for code in range(601999, 602100):
        dataUrl = "http://ichart.yahoo.com/table.csv?s=%d.SS&a=01&b=01&c=2005&d=01&e=01&f=2015&g=d" % code
        print getHistoryStockData(code, dataUrl )
   
    
    #深市2005-2015历史数据
    for code in range(1, 1999):
        dataUrl = "http://ichart.yahoo.com/table.csv?s=%06d.SZ&a=01&b=01&c=2005&d=01&e=01&f=2015&g=d" % code
        print getHistoryStockData(code, dataUrl)

    
    #中小板股票
    for code in range(2001, 2999):   
        dataUrl = "http://ichart.yahoo.com/table.csv?s=%06d.SZ&a=01&b=01&c=2005&d=01&e=01&f=2015&g=d" % code
        print getHistoryStockData(code, dataUrl)
      
    
    #创业板股票
    for code in range(300001, 300400):
        dataUrl = "http://ichart.yahoo.com/table.csv?s=%d.SZ&a=01&b=01&c=2005&d=01&e=01&f=2015&g=d" % code
        print getHistoryStockData(code, dataUrl)
   
        
def main():
    "main function"
   
    dbOperator.connDB()
    get_stock_history()
    dbOperator.closeDB() 
    
if __name__ == '__main__':
    main()


     (6)获取实时价格和现金流数据

      A:实时价格数据采用腾讯的接口:沪市:http://qt.gtimg.cn/q=sh<int>,深市:http://qt.gtimg.cn/q=sz<int>

      如获取平安银行的股票实时数据:http://qt.gtimg.cn/q=sz000001,会返回一个包含股票数据的字符串:

v_sz000001="51~平安银行~000001~11.27~11.27~11.30~316703~151512~165192~11.27~93~11.26~
4352~11.25~4996~11.24~1037~11.23~1801~11.28~1181~11.29~2108~11.30~1075~11.31~1592~11.32~
1118~15:00:24/11.27/3146/S/3545407/17948|14:56:59/11.26/15/S/16890/17787|
14:56:56/11.25/404/S/454693/17783|14:56:54/11.26/173/B/194674/17780|14:56:51
/11.26/306/B/344526/17777|14:56:47/11.26/16/B/18016/17773~
20151029150142~0.00~0.00~11.36~11.25~
11.26/313557/354285045~
316703~35783~0.27~7.38~~11.36~11.25~0.98~1330.32~1612.59~1.03~12.40~10.14~";

     数据比较多,比较有用的是:1-名称;2-代码;3-价格;4-昨日收盘;5-今日开盘;6-交易量(手);7-外盘;8-内盘;9-买一;10-买一量;11-买二;12-买二量;13-买三;14-买三量;15-买四;16-买四量;17-买五;18-买五量;19-卖一;20-卖一量;21-卖二;22-卖二量;23-卖三;24-卖三量;25-卖四;26-卖四量;27-卖五;28-卖五量;30-时间;31-涨跌;32-涨跌率;33-最高价;34-最低价;35-成交量(万);38-换手率;39-市盈率;42-振幅;43-流通市值;44-总市值;45-市净率


       B:现金流数据仍然采用腾讯接口:沪市:http://qt.gtimg.cn/q=ff_sh<int>,深市:http://qt.gtimg.cn/q=ff_sz<int>

      例如平安银行的现金流数据http://qt.gtimg.cn/q=ff_sz000001:

v_ff_sz000001="sz000001~21162.20~24136.40~-2974.20~-8.31~14620.87~11646.65~2974.22~
8.31~35783.07~261502.0~261158.3~平安银行~20151029~20151028^37054.20^39358.20~
20151027^39713.50^42230.70~20151026^82000.80^83689.90~20151023^81571.30^71743.10";

          比较重要的:1-主力流入;2-主力流出;3-主力净流量;4-主力流入/主力总资金;5-散户流入;6-散户流出;7-散户净流量;8-散户流入/散户总资金;9-总资金流量;12-名字;13-日期


           采用多线程、数据库连接池实现股票实时价格和现金流数据的获取:

#-*- coding: UTF-8 -*- 
'''
Created on 2015年3月2日
@author: Casey
'''
import time
import threading
'''
上证编码:'600001' .. '602100'
深圳编码:'000001' .. '001999'
中小板:'002001' .. '002999'
创业板:'300001' .. '300400'
'''
import urllib2
from datetime import date
from db import *
from setting import *
class StockTencent(object):
    #数据库表
    __stockTables = {'cash':'stock_cash_tencent','quotation':'stock_quotation_tencent'}
    '''初始化'''
    def __init__(self):
       self.__logger = LoggerFactory.getLogger('StockTencent')
       self.__dbOperator = DBOperator()
       
    def main(self):
        self.__dbOperator.connDB()
        threading.Thread(target = self.getStockCash).start() 
        threading.Thread(target = self.getStockQuotation).start() 
        self.__dbOperator.closeDB() 
        
    '''查找指定日期股票流量'''
    def __isStockExitsInDate(self, table, stock, date):
        sql = "select * from " + table + " where code = '%s' and date='%s'" % (stock, date)
        n = self.__dbOperator.execute(sql) 
        if n >= 1:
            return True 
      
    '''获取股票资金流明细'''
    def __getStockCashDetail(self, dataUrl):
        #读取数据
        tempData = self.__getDataFromUrl(dataUrl)
        
        if tempData == None:
            time.sleep(10)
            tempData = self.__getDataFromUrl(dataUrl)
            return False
               
        #解析资金流向数据
        stockCash = {} 
        stockInfo = tempData.split('~')
        if len(stockInfo) < 13: return
        if len(stockInfo) != 0 and stockInfo[0].find('pv_none') == -1:
            table = self.__stockTables['cash']
            code = stockInfo[0].split('=')[1][2:]
            date = stockInfo[13]
            if not self.__isStockExitsInDate(table, code, date):
                stockCash['code'] = stockInfo[0].split('=')[1][2:]
                stockCash['main_in_cash']     = stockInfo[1]
                stockCash['main_out_cash']    = stockInfo[2]
                stockCash['main_net_cash']    = stockInfo[3]
                stockCash['main_net_rate']    = stockInfo[4]
                stockCash['private_in_cash']  = stockInfo[5]
                stockCash['private_out_cash'] = stockInfo[6]
                stockCash['private_net_cash'] = stockInfo[7]
                stockCash['private_net_rate'] = stockInfo[8]
                stockCash['total_cash']       = stockInfo[9]
                stockCash['name']             = stockInfo[12].decode('utf8')
                stockCash['date']             = stockInfo[13]    
                #插入数据库
                self.__dbOperator.insertIntoDB(table, stockCash) 
 
    '''获取股票交易信息明细'''
    def getStockQuotationDetail(self, dataUrl):
        tempData = self.__getDataFromUrl(dataUrl)
        
        if tempData == None:
            time.sleep(10)
            tempData = self.__getDataFromUrl(dataUrl)
            return False 
           
        stockQuotation = {} 
        stockInfo = tempData.split('~')
        if len(stockInfo) < 45: return
        if len(stockInfo) != 0 and stockInfo[0].find('pv_none') ==-1 and stockInfo[3].find('0.00') == -1:
            table = self.__stockTables['quotation']
            code = stockInfo[2] 
            date = stockInfo[30]
            if not self.__isStockExitsInDate(table, code, date):
                stockQuotation['code']  = stockInfo[2]
                stockQuotation['name']  = stockInfo[1].decode('utf8')
                stockQuotation['price'] = stockInfo[3]
                stockQuotation['yesterday_close']   = stockInfo[4]
                stockQuotation['today_open']        = stockInfo[5]
                stockQuotation['volume']            = stockInfo[6]
                stockQuotation['outer_sell']        = stockInfo[7]
                stockQuotation['inner_buy']         = stockInfo[8]
                stockQuotation['buy_one']           = stockInfo[9]
                stockQuotation['buy_one_volume']    = stockInfo[10]
                stockQuotation['buy_two']           = stockInfo[11]
                stockQuotation['buy_two_volume']    = stockInfo[12]
                stockQuotation['buy_three']         = stockInfo[13]
                stockQuotation['buy_three_volume']  = stockInfo[14]
                stockQuotation['buy_four']          = stockInfo[15]
                stockQuotation['buy_four_volume']   = stockInfo[16]
                stockQuotation['buy_five']          = stockInfo[17]
                stockQuotation['buy_five_volume']   = stockInfo[18]
                stockQuotation['sell_one']          = stockInfo[19]
                stockQuotation['sell_one_volume']   = stockInfo[20]
                stockQuotation['sell_two']          = stockInfo[22]
                stockQuotation['sell_two_volume']   = stockInfo[22]
                stockQuotation['sell_three']        = stockInfo[23]
                stockQuotation['sell_three_volume'] = stockInfo[24]
                stockQuotation['sell_four']         = stockInfo[25]
                stockQuotation['sell_four_volume']  = stockInfo[26]
                stockQuotation['sell_five']         = stockInfo[27]
                stockQuotation['sell_five_volume']  = stockInfo[28]
                stockQuotation['datetime']          = stockInfo[30]
                stockQuotation['updown']            = stockInfo[31]
                stockQuotation['updown_rate']       = stockInfo[32]
                stockQuotation['heighest_price']    = stockInfo[33]
                stockQuotation['lowest_price']      = stockInfo[34]
                stockQuotation['volume_amout']      = stockInfo[35].split('/')[2]
                stockQuotation['turnover_rate']     = stockInfo[38]
                stockQuotation['pe_rate']           = stockInfo[39]
                stockQuotation['viberation_rate']   = stockInfo[42]
                stockQuotation['circulated_stock']  = stockInfo[43]
                stockQuotation['total_stock']       = stockInfo[44]
                stockQuotation['pb_rate']           = stockInfo[45]
                self.__dbOperator.insertIntoDB(table, stockQuotation) 
    '''读取信息'''
    def __getDataFromUrl(self, dataUrl):
        r = urllib2.Request(dataUrl)
        try:
            stdout = urllib2.urlopen(r, data=None, timeout=3)
        except Exception,e:
            self.__logger.error(">>>>>> Exception: " +str(e))   
            return None
        
        stdoutInfo = stdout.read().decode(params.codingtype).encode('utf-8') 
        tempData = stdoutInfo.replace('"', '')
        self.__logger.debug(tempData) 
        return tempData
     
    '''获取股票现金流量'''   
    def getStockCash(self):
        self.__logger.debug("开始:收集股票现金流信息")
        try:
            #沪市股票
            for code in range(600001, 602100):
                dataUrl = "http://qt.gtimg.cn/q=ff_sh%d" % code
                self.__getStockCashDetail(dataUrl) 
                
            #深市股票
            for code in range(1, 1999):
                dataUrl = "http://qt.gtimg.cn/q=ff_sz%06d" % code
                self.__getStockCashDetail(dataUrl)  
                   
            #中小板股票
            for code in range(2001, 2999):
                dataUrl = "http://qt.gtimg.cn/q=ff_sz%06d" % code
                self.__getStockCashDetail(dataUrl)      
            
            #'300001' .. '300400'
            #创业板股票
            for code in range(300001, 300400):
                dataUrl = "http://qt.gtimg.cn/q=ff_sz%d" % code
                self.__getStockCashDetail(dataUrl)    
        
        except Exception as err:
            self.__logger.error(">>>>>> Exception: " +str(code) + " " + str(err))
        finally:
            None
        self.__logger.debug("结束:股票现金流收集")
        
    '''获取股票交易行情数据'''
    def getStockQuotation(self):
        self.__logger.debug("开始:收集股票交易行情数据") 
        try:
            #沪市股票
            for code in range(600001, 602100):
                dataUrl = "http://qt.gtimg.cn/q=sh%d" % code
                self.getStockQuotationDetail(dataUrl)   
       
            #深市股票
            for code in range(1, 1999):
                dataUrl = "http://qt.gtimg.cn/q=sz%06d" % code
                self.getStockQuotationDetail(dataUrl)  
         
            #中小板股票
            for code in range(2001, 2999):
                dataUrl = "http://qt.gtimg.cn/q=sz%06d" % code
                self.getStockQuotationDetail(dataUrl)     
            
            #'300001' .. '300400'
            #  创业板股票
            for code in range(300001, 300400):
                dataUrl = "http://qt.gtimg.cn/q=sz%d" % code
                self.getStockQuotationDetail(dataUrl)     
        
        except Exception as err:
            self.__logger.error(">>>>>> Exception: " +str(code) + " " + str(err))
        finally:
            None
        self.__logger.debug("结束:收集股票交易行情数据") 
     
if __name__ == '__main__':
    StockTencent(). main()


      (7)加入到系统任务计划中收集盘后数据

wKiom1YyH_GyacaLAAMgRbG9tWo913.jpg

wKioL1YyIEqAnvNKAAKIOiIfJoI209.jpg

wKiom1YyIBjySZAhAAJ3ix5-_ag403.jpg




          (8)收集后的数据可以用以分析了,例如:

          求取10月28日主力净流入最大的股票:select * from stock_cash_tencent where main_net_cash = (select max(main_net_cash) from stock_cash_tencent where  date = '20151028' )

wKiom1YyI8aS8d82AADWyXR8I98495.jpg

         原来是“兴蓉环境”,当日放量上涨,次日收跌,连续多日有主力资金流入。


wKiom1YyJNLiM1BRAAUBkuKSJXg460.jpg


     excel中做分析:

wKiom1YyLsGwK9ICAAkGksgph3w517.jpg

    

      平安银行的资金流量分析

wKiom1YyMRfBp1viAAYTBxjf6ME750.jpg

你可能感兴趣的:(python,股票)