- 学习AI机器学习所需的数学基础
frostmelody
机器学习小知识点人工智能学习机器学习
一、机器学习岗位的数学需求矩阵机器学习岗位研究型职位工业界职位DeepMind/Meta/Google研究部门研究科学家/研究工程师普通科技公司机器学习工程师/数据科学家需硕士/博士数学水平本科数学基础二、数学需求深度解析1.研究型职位(需深度数学)学历要求:数学/物理/计算机/统计/工程本科基础硕士/博士优先(Kaggle调查显示博士占比高)薪资关联:学历与收入呈正相关2.工业界职位(基础数学)
- 人大金仓数据库GROUP BY问题全面解析与解决方案
小猿、
数据库相关技术栈java工作常见问题数据库
一、问题现象在人大金仓(Kingbase)数据库中使用GROUPBY时,常遇到以下错误:ERROR:column"xxx"mustappearintheGROUPBYclauseorbeusedinanaggregatefunctionPosition:XX二、问题根源人大金仓基于PostgreSQL,严格执行SQL标准,要求:SELECT列表中的非聚合列必须全部包含在GROUPBY子句中或者这些
- Vue 实现拖拉拽组件 vue-draggable-plus
清风细雨_林木木
Vue其他vue.js前端javascript
vue-draggable-plus是一个基于Sortable.js的Vue拖拽组件库,是vuedraggable的升级替代品,支持Vue2和Vue3,功能更强,类型更完善,维护更活跃。特点同时支持Vue2和Vue3完整类型支持(TypeScript)拖拽排序、嵌套列表、拖入拖出基于原生Sortable.js,功能丰富支持v-model双向绑定安装npminstallvue-draggable-p
- 【MongoDB】MongoDB从零开始详细教程 核心概念与原理 环境搭建 基础操作
夜雨hiyeyu.com
mongodb数据库javaspringboot数据库架构springcloudsql
MongoDB从零开始详细教程核心概念与原理环境搭建基础操作一、核心概念与原理1.核心组件2.MongoDBvs关系型数据库二、环境搭建(Windows/Linux/CentOS)1.Windows安装2.CentOS安装3.连接验证三、基础操作(CRUD)1.数据库与集合操作2.文档增删改查四、高级特性与优化1.索引优化2.聚合管道(Aggregation)3.分片集群与副本集五、编程语言集成(
- LightGBM:极速梯度提升机——结构化数据建模的终极武器
大千AI助手
人工智能Python#OTHER随机森林算法机器学习决策树人工智能GBDTLightGBM
基于直方图与Leaf-wise生长的高效GBDT实现,横扫Kaggle与工业场景一、为什么需要LightGBM?GBDT的瓶颈传统梯度提升树(如XGBoost)在处理海量数据时面临两大痛点:训练速度慢:需预排序特征&层次生长(Level-wise)内存消耗高:存储特征值与分裂点信息LightGBM的诞生微软亚洲研究院于2017年开源,核心目标:✅训练效率提升10倍✅内存占用降低50%✅保持与XGB
- Python打卡训练营-Day43-复习日
traMpo1ine
python
@浙大疏锦行作业kaggle找到一个图像数据集,用cnn网络进行训练并且用grad-cam做可视化进阶:并拆分成多个文件
- DAY 43 复习日 CNN训练与Grad-CAM可视化(模块化实现)
沐兮兮兮
cnn人工智能神经网络
目录Kaggle图像分类项目:项目结构一、数据准备模块1.config/paths.py2.data/preprocessing.py3.data/dataset.py二、模型定义模块1.models/cnn_model.py2.models/grad_cam.py三、训练脚本train.py四、可视化模块1.utils/visualization.py2.visualize.py五、实用工具ut
- Kaggle量化比赛复盘: Optiver - Trading at the Close
熬夜造bug
AI领域应用金融人工智能机器学习深度学习
目录前言一、开源方案1.6th获奖方案(代码未开源)1.1.特征工程(关键代码)1.2.方案解析2.7th获奖方案(开源)2.1.特征工程2.2.特征工程3.9th获奖方案(半开源)3.1.特征构造3.2.特征筛选3.3.模型3.4.zero_sum(标签后处理)4.14th获奖方案(开源)4.1.方案开源链接4.2.zero_sum(标签后处理)5.15th获奖方案(半开源)5.1.特征工程5.
- Kaggle金牌方案复现:CGO-Transformer-GRU多模态融合预测实战
1背景分析在2023年Kaggle"GlobalMultimodalDemandForecastingChallenge"竞赛中,CGO-Transformer-GRU方案以领先第二名1.8个百分点的绝对优势夺冠,创下该赛事三年来的最佳成绩。本方案创新性地融合了协方差引导优化(CGO)、注意力机制和时序建模三大技术模块,解决了多模态数据融合中的关键挑战:模态对齐、特征冲突和时序依赖建模。(1)多模
- 梯度增强与XGBoost算法解析
weixin_47233946
算法算法
##一、梯度增强(GradientBoosting)原理###1.1集成学习与Boosting集成学习通过结合多个弱模型提升整体性能,主要包括Bagging(如随机森林)和Boosting两类方法。**梯度增强**属于Boosting家族,核心思想是**串行训练模型,每一步修正前序模型的残差**,最终形成强预测器。###1.2算法核心流程1.**初始化基模型**:用常数(如目标变量均值)预测。2.
- 【vLLM 学习】Disaggregated Prefill
vLLM是一款专为大语言模型推理加速而设计的框架,实现了KV缓存内存几乎零浪费,解决了内存管理瓶颈问题。更多vLLM中文文档及教程可访问→https://vllm.hyper.ai/*在线运行vLLM入门教程:零基础分步指南源码examples/offline_inference/disaggregated_prefill.py#SPDX-License-Identifier:Apache-2.0
- 使用IPV6 ANYCAST技术实现UDP应用负载均衡
使用IPV6ANYCAST技术实现UDP应用负载均衡byvictor.cao目录1.前言1.1.术语解释2.环境要求2.1.拓扑结构2.2.软件环境3.三种负载均衡优缺点比较4.IPV6ANYCAST负载配置4.1.华为交换机负载均衡4.2.路由配置4.3.服务器配置配置Quagga备注:A.路由问题B.华为路由负载模式C.华为路由器选型前言术语解释IPV6ANYCAST:当一个单播地址被分配到多
- vue3单张图片放大缩小拖拽功能
ikun在线敲打
vue.js前端javascript
此篇为单张,多张请移步多张实现的文章话不多说直接上代码import{ref,onMounted,onBeforeUnmount}from'vue'constboxRef=ref(null)constimgRef=ref(null)letx=0lety=0letisDragging=false//确保元素存在后再操作constgetImgElement=()=>{if(!imgRef.value){
- vue实现拖拽,增加等功能
王之蔑视.
vue.js前端javascript
一、直接上代码:样式如下#安装拖拽依赖vuedraggablenpminstallvuedraggable二、示例代码搜索重置新增复制批量删除{{deptNames[scope.row.deptId]||'未知部门'}}详细修改删除删除0":total="total":page.sync="queryParams.pageNum":limit.sync="queryParams.pageSize"
- Python rolling计算“1”在过去3行中出现的次数
@昵称不存在
Pythonpython开发语言
rolling()是Pandas中用于移动窗口操作的强大函数,常用于:计算滚动平均、最大值、最小值、求和等时间序列平滑统计窗口内的自定义聚合df.rolling(window,min_periods=1).agg_func()常见参数参数说明window滚动窗口大小(整数或时间窗口)min_periods最少有多少个非NA才计算结果(默认等于window)center是否将窗口对齐中心(默认靠右)
- 在 Laravel Swagger 中集成认证支持
深山技术宅
LaravelPHP经验laravelphp
在LaravelSwagger中集成认证支持在Swagger/OpenAPI中添加认证支持对于文档非常重要,它允许用户直接在文档界面测试需要认证的端点。以下是完整的集成方案:完整解决方案1.定义安全方案在你的控制器文件顶部添加安全方案定义:/***@OA\OpenApi(*security={{"bearerAuth":{}}}*)**@OA\SecurityScheme(*securitySch
- 分类树/装袋法/随机森林算法的R语言实现
廖致君
R
原文首发于简书于[2018.06.12]本文是我自己动手用R语言写的实现分类树的代码,以及在此基础上写的袋装法(bagging)和随机森林(randomforest)的算法实现。全文的结构是:分类树基本知识predginisplitrulesplitrule_bestsplitrule_randomsplittingbuildTreepredict装袋法与随机森林基本知识baggingpredic
- day43python打卡
qq_58459892
py打开学习pytorchpython深度学习算法人工智能
作业:kaggle找到一个图像数据集,用cnn网络进行训练并且用grad-cam做可视化进阶:并拆分成多个文件importosimporttorchimporttorch.optimasoptimimporttorch.nnasnnimporttorch.nn.functionalasFimporttorchvisionimporttorchvision.transformsastransform
- Spring Boot 3.x 整合Swagger教程
AD钙奶-lalala
全栈springbootjavaspring
解决Springfox依赖注入失败问题:org.springframework.beans.factory.UnsatisfiedDependencyException:Errorcreatingbeanwithname'apiDocumentationScanner'definedinURL···最佳方案是放弃Springfox2.x,改用SpringDocOpenAPI,因为:Springfo
- 大批量数据分析挖掘思路-Kaggle项目:保险销售预测
江枫渔火A
数据分析机器学习python
1、问题背景Kaggle在6月份的季赛是保险销售预测问题,其原始数据集381109条的保险销售,季赛由利用原数据集的模型生成扩充而来。本篇文章以原始数据集为基础,用以抛砖引玉,探讨该问题的高效解法。原始数据地址:HealthInsuranceCrossSellPrediction(kaggle.com)2、问题描述原文:我们的客户是一家为其客户提供健康保险的保险公司,现在他们需要您的帮助来建立一个
- Day22 复习日
cylat
python打卡机器学习人工智能python
一、如何使用kaggle平台:注册与个人资料注册方式:可以通过邮箱、Google、Facebook等方式注册。个人资料完善:尽量完整填写个人资料。竞赛板块竞赛选择兴趣与能力匹配:根据自己的兴趣和实际数据分析能力选择竞赛。对于初学者,建议从一些入门级或小型竞赛开始,逐步积累经验;有一定基础后再挑战更具难度的竞赛。竞赛规则研读:在参与竞赛前,务必仔细阅读竞赛的规则,包括比赛时间节点(报名时间、提交结果
- 如何在ABP中定义实体、值对象和聚合根?
东百牧码人
ABPDDD领域驱动
在ABP框架中定义实体(Entity)、值对象(ValueObject)和聚合根(AggregateRoot)需要遵循领域驱动设计(DDD)的原则,同时利用ABP提供的基类和接口。以下是具体实现方法:一、实体(Entity)的定义实体是具有唯一标识且生命周期中状态会发生变化的对象。在ABP中,实体通常继承自Entity基类或其派生类。1.基本实体定义usingVolo.Abp.Domain.Ent
- 5分钟玩转Swagger UI:Docker部署+静态化实战
大千AI助手
DockerPython#Django开发uidocker容器swaggeruiswagger
本文来自「大千AI助手」技术实战系列,专注用真话讲技术,拒绝过度包装。SwaggerUI作为API文档可视化利器,能自动生成交互式文档,大幅提升开发效率。下面分享两种高效部署方案:为什么需要SwaggerUI?•✅自动生成API交互文档•✅支持在线接口调试•✅实时展示API变更往期文章推荐:18.记录下blog的成长过程17.再说一说LangChainRunnable接口16.Docker实战:5
- python实现一个示波器仿真,可以改参数同步效果
YiWait
python开发语言
代码importsysimportnumpyasnpimportmatplotlib.pyplotaspltfrommatplotlib.backends.backend_qt5aggimportFigureCanvasQTAggasFigureCanvasfrommatplotlib.backends.backend_qt5aggimportNavigationToolbar2QTasNavig
- Coggle数据科学 | Kaggle赛题解析:识别数据引用与分类
双木的木
深度学习拓展阅读分类数据挖掘人工智能计算机视觉promptpython算法
本文来源公众号“Coggle数据科学”,仅用于学术分享,侵权删,干货满满。原文链接:Kaggle赛题解析:识别数据引用与分类赛题名称:MakeDataCount-FindingDataReferences赛题类型:自然语言处理、信息检索赛题任务:从科学论文的全文中提取所有被引用的研究数据,并根据上下文将其分类为初级引用(Primary)或次级引用(Secondary)。https://www.ka
- pp-ocrv5中的改进-跨阶段特征融合(CSP-PAN)以及在 Neck 部分引入 CSP-PAN后为何就能解决小文本漏检问题?
好的,我们来详细解析一下PP-OCRv5中的**跨阶段特征融合(CSP-PAN)**改进,以及它如何有效解决小文本漏检问题。背景:PP-OCR的Neck部分与PAN在PP-OCRv3及之前的版本中,Neck部分使用的是标准的**PAN(PathAggregationNetwork)**结构。PAN是目标检测中用于融合不同尺度特征图的主流方法之一,其核心思想是:自顶向下(Top-down):将深层(
- 【机器学习】机器学习重要分支——集成学习:理论、算法与实践
E绵绵
Everything机器学习集成学习算法pythonAIGC人工智能应用
文章目录引言第一章集成学习的基本概念1.1什么是集成学习1.2集成学习的类型1.3集成学习的优势第二章集成学习的核心算法2.1Bagging方法2.2Boosting方法2.3Stacking方法第三章集成学习的应用实例3.1图像分类3.2文本分类第四章集成学习的未来发展与挑战4.1模型多样性与集成策略4.2大规模数据与计算资源4.3集成学习的解释性与可视化结论引言集成学习(EnsembleLea
- DeepSeek 大型 MoE 模型大规模部署压测学习
andyguo
学习
https://lmsys.org/blog/2025-05-05-large-scale-ep/以上是对文章《DeployingDeepSeekwithPDDisaggregationandLarge-ScaleExpertParallelismon96 H100GPUs》的中文总结,以及对您提到的几个术语(MLA、MoE、SGLang、VLLM、EP和DP)的说明。文章中文总结这篇由SGLan
- 推荐使用:Wallabagger - 您的个人网页收藏神器
薛锨宾
推荐使用:Wallabagger-您的个人网页收藏神器wallabaggerChrome/Firefox/Operapluginforwallabagv2.项目地址:https://gitcode.com/gh_mirrors/wa/wallabagger在信息爆炸的时代,如何高效地保存和管理感兴趣的网页内容成为了许多人的痛点。今天,我们向您隆重推荐一款名为Wallabagger的开源扩展,它是连
- [特殊字符] Pandas三招鲜:避开数据处理的血泪坑!(内含真实翻车实录)
xiaoqian9997
pandas其他
文章目录第一招:读取文件时,别让你的内存原地爆炸!第二招:处理空值(NaN),别再只会`fillna(0)`了!第三招:`groupby`+`agg`玩出花,告别低效循环!最后的大实话(也是血的教训)朋友们!!!今天咱们聊聊Pandas——这个数据分析领域的瑞士军刀,也是无数人深夜debug的罪魁祸首(别问我怎么知道的)。用了这么多年Pandas,我踩过的坑连起来能绕地球……好吧夸张了,但填满一个
- Linux的Initrd机制
被触发
linux
Linux 的 initrd 技术是一个非常普遍使用的机制,linux2.6 内核的 initrd 的文件格式由原来的文件系统镜像文件转变成了 cpio 格式,变化不仅反映在文件格式上, linux 内核对这两种格式的 initrd 的处理有着截然的不同。本文首先介绍了什么是 initrd 技术,然后分别介绍了 Linux2.4 内核和 2.6 内核的 initrd 的处理流程。最后通过对 Lin
- maven本地仓库路径修改
bitcarter
maven
默认maven本地仓库路径:C:\Users\Administrator\.m2
修改maven本地仓库路径方法:
1.打开E:\maven\apache-maven-2.2.1\conf\settings.xml
2.找到
 
- XSD和XML中的命名空间
darrenzhu
xmlxsdschemanamespace命名空间
http://www.360doc.com/content/12/0418/10/9437165_204585479.shtml
http://blog.csdn.net/wanghuan203/article/details/9203621
http://blog.csdn.net/wanghuan203/article/details/9204337
http://www.cn
- Java 求素数运算
周凡杨
java算法素数
网络上对求素数之解数不胜数,我在此总结归纳一下,同时对一些编码,加以改进,效率有成倍热提高。
第一种:
原理: 6N(+-)1法 任何一个自然数,总可以表示成为如下的形式之一: 6N,6N+1,6N+2,6N+3,6N+4,6N+5 (N=0,1,2,…)
- java 单例模式
g21121
java
想必单例模式大家都不会陌生,有如下两种方式来实现单例模式:
class Singleton {
private static Singleton instance=new Singleton();
private Singleton(){}
static Singleton getInstance() {
return instance;
}
- Linux下Mysql源码安装
510888780
mysql
1.假设已经有mysql-5.6.23-linux-glibc2.5-x86_64.tar.gz
(1)创建mysql的安装目录及数据库存放目录
解压缩下载的源码包,目录结构,特殊指定的目录除外:
- 32位和64位操作系统
墙头上一根草
32位和64位操作系统
32位和64位操作系统是指:CPU一次处理数据的能力是32位还是64位。现在市场上的CPU一般都是64位的,但是这些CPU并不是真正意义上的64 位CPU,里面依然保留了大部分32位的技术,只是进行了部分64位的改进。32位和64位的区别还涉及了内存的寻址方面,32位系统的最大寻址空间是2 的32次方= 4294967296(bit)= 4(GB)左右,而64位系统的最大寻址空间的寻址空间则达到了
- 我的spring学习笔记10-轻量级_Spring框架
aijuans
Spring 3
一、问题提问:
→ 请简单介绍一下什么是轻量级?
轻量级(Leightweight)是相对于一些重量级的容器来说的,比如Spring的核心是一个轻量级的容器,Spring的核心包在文件容量上只有不到1M大小,使用Spring核心包所需要的资源也是很少的,您甚至可以在小型设备中使用Spring。
 
- mongodb 环境搭建及简单CURD
antlove
WebInstallcurdNoSQLmongo
一 搭建mongodb环境
1. 在mongo官网下载mongodb
2. 在本地创建目录 "D:\Program Files\mongodb-win32-i386-2.6.4\data\db"
3. 运行mongodb服务 [mongod.exe --dbpath "D:\Program Files\mongodb-win32-i386-2.6.4\data\
- 数据字典和动态视图
百合不是茶
oracle数据字典动态视图系统和对象权限
数据字典(data dictionary)是 Oracle 数据库的一个重要组成部分,这是一组用于记录数据库信息的只读(read-only)表。随着数据库的启动而启动,数据库关闭时数据字典也关闭 数据字典中包含
数据库中所有方案对象(schema object)的定义(包括表,视图,索引,簇,同义词,序列,过程,函数,包,触发器等等)
数据库为一
- 多线程编程一般规则
bijian1013
javathread多线程java多线程
如果两个工两个以上的线程都修改一个对象,那么把执行修改的方法定义为被同步的,如果对象更新影响到只读方法,那么只读方法也要定义成同步的。
不要滥用同步。如果在一个对象内的不同的方法访问的不是同一个数据,就不要将方法设置为synchronized的。
- 将文件或目录拷贝到另一个Linux系统的命令scp
bijian1013
linuxunixscp
一.功能说明 scp就是security copy,用于将文件或者目录从一个Linux系统拷贝到另一个Linux系统下。scp传输数据用的是SSH协议,保证了数据传输的安全,其格式如下: scp 远程用户名@IP地址:文件的绝对路径
- 【持久化框架MyBatis3五】MyBatis3一对多关联查询
bit1129
Mybatis3
以教员和课程为例介绍一对多关联关系,在这里认为一个教员可以叫多门课程,而一门课程只有1个教员教,这种关系在实际中不太常见,通过教员和课程是多对多的关系。
示例数据:
地址表:
CREATE TABLE ADDRESSES
(
ADDR_ID INT(11) NOT NULL AUTO_INCREMENT,
STREET VAR
- cookie状态判断引发的查找问题
bitcarter
formcgi
先说一下我们的业务背景:
1.前台将图片和文本通过form表单提交到后台,图片我们都做了base64的编码,并且前台图片进行了压缩
2.form中action是一个cgi服务
3.后台cgi服务同时供PC,H5,APP
4.后台cgi中调用公共的cookie状态判断方法(公共的,大家都用,几年了没有问题)
问题:(折腾两天。。。。)
1.PC端cgi服务正常调用,cookie判断没
- 通过Nginx,Tomcat访问日志(access log)记录请求耗时
ronin47
一、Nginx通过$upstream_response_time $request_time统计请求和后台服务响应时间
nginx.conf使用配置方式:
log_format main '$remote_addr - $remote_user [$time_local] "$request" ''$status $body_bytes_sent "$http_r
- java-67- n个骰子的点数。 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
bylijinnan
java
public class ProbabilityOfDice {
/**
* Q67 n个骰子的点数
* 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
* 在以下求解过程中,我们把骰子看作是有序的。
* 例如当n=2时,我们认为(1,2)和(2,1)是两种不同的情况
*/
private stati
- 看别人的博客,觉得心情很好
Cb123456
博客心情
以为写博客,就是总结,就和日记一样吧,同时也在督促自己。今天看了好长时间博客:
职业规划:
http://www.iteye.com/blogs/subjects/zhiyeguihua
android学习:
1.http://byandby.i
- [JWFD开源工作流]尝试用原生代码引擎实现循环反馈拓扑分析
comsci
工作流
我们已经不满足于仅仅跳跃一次,通过对引擎的升级,今天我测试了一下循环反馈模式,大概跑了200圈,引擎报一个溢出错误
在一个流程图的结束节点中嵌入一段方程,每次引擎运行到这个节点的时候,通过实时编译器GM模块,计算这个方程,计算结果与预设值进行比较,符合条件则跳跃到开始节点,继续新一轮拓扑分析,直到遇到
- JS常用的事件及方法
cwqcwqmax9
js
事件 描述
onactivate 当对象设置为活动元素时触发。
onafterupdate 当成功更新数据源对象中的关联对象后在数据绑定对象上触发。
onbeforeactivate 对象要被设置为当前元素前立即触发。
onbeforecut 当选中区从文档中删除之前在源对象触发。
onbeforedeactivate 在 activeElement 从当前对象变为父文档其它对象之前立即
- 正则表达式验证日期格式
dashuaifu
正则表达式IT其它java其它
正则表达式验证日期格式
function isDate(d){
var v = d.match(/^(\d{4})-(\d{1,2})-(\d{1,2})$/i);
if(!v) {
this.focus();
return false;
}
}
<input value="2000-8-8" onblu
- Yii CModel.rules() 方法 、validate预定义完整列表、以及说说验证
dcj3sjt126com
yii
public array rules () {return} array 要调用 validate() 时应用的有效性规则。 返回属性的有效性规则。声明验证规则,应重写此方法。 每个规则是数组具有以下结构:array('attribute list', 'validator name', 'on'=>'scenario name', ...validation
- UITextAttributeTextColor = deprecated in iOS 7.0
dcj3sjt126com
ios
In this lesson we used the key "UITextAttributeTextColor" to change the color of the UINavigationBar appearance to white. This prompts a warning "first deprecated in iOS 7.0."
Ins
- 判断一个数是质数的几种方法
EmmaZhao
Mathpython
质数也叫素数,是只能被1和它本身整除的正整数,最小的质数是2,目前发现的最大的质数是p=2^57885161-1【注1】。
判断一个数是质数的最简单的方法如下:
def isPrime1(n):
for i in range(2, n):
if n % i == 0:
return False
return True
但是在上面的方法中有一些冗余的计算,所以
- SpringSecurity工作原理小解读
坏我一锅粥
SpringSecurity
SecurityContextPersistenceFilter
ConcurrentSessionFilter
WebAsyncManagerIntegrationFilter
HeaderWriterFilter
CsrfFilter
LogoutFilter
Use
- JS实现自适应宽度的Tag切换
ini
JavaScripthtmlWebcsshtml5
效果体验:http://hovertree.com/texiao/js/3.htm
该效果使用纯JavaScript代码,实现TAB页切换效果,TAB标签根据内容自适应宽度,点击TAB标签切换内容页。
HTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
- Hbase Rest API : 数据查询
kane_xie
RESThbase
hbase(hadoop)是用java编写的,有些语言(例如python)能够对它提供良好的支持,但也有很多语言使用起来并不是那么方便,比如c#只能通过thrift访问。Rest就能很好的解决这个问题。Hbase的org.apache.hadoop.hbase.rest包提供了rest接口,它内嵌了jetty作为servlet容器。
启动命令:./bin/hbase rest s
- JQuery实现鼠标拖动元素移动位置(源码+注释)
明子健
jqueryjs源码拖动鼠标
欢迎讨论指正!
print.html代码:
<!DOCTYPE html>
<html>
<head>
<meta http-equiv=Content-Type content="text/html;charset=utf-8">
<title>发票打印</title>
&l
- Postgresql 连表更新字段语法 update
qifeifei
PostgreSQL
下面这段sql本来目的是想更新条件下的数据,可是这段sql却更新了整个表的数据。sql如下:
UPDATE tops_visa.visa_order
SET op_audit_abort_pass_date = now()
FROM
tops_visa.visa_order as t1
INNER JOIN tops_visa.visa_visitor as t2
ON t1.
- 将redis,memcache结合使用的方案?
tcrct
rediscache
公司架构上使用了阿里云的服务,由于阿里的kvstore收费相当高,打算自建,自建后就需要自己维护,所以就有了一个想法,针对kvstore(redis)及ocs(memcache)的特点,想自己开发一个cache层,将需要用到list,set,map等redis方法的继续使用redis来完成,将整条记录放在memcache下,即findbyid,save等时就memcache,其它就对应使用redi
- 开发中遇到的诡异的bug
wudixiaotie
bug
今天我们服务器组遇到个问题:
我们的服务是从Kafka里面取出数据,然后把offset存储到ssdb中,每个topic和partition都对应ssdb中不同的key,服务启动之后,每次kafka数据更新我们这边收到消息,然后存储之后就发现ssdb的值偶尔是-2,这就奇怪了,最开始我们是在代码中打印存储的日志,发现没什么问题,后来去查看ssdb的日志,才发现里面每次set的时候都会对同一个key