前面的文章介绍了TCP状态变迁,以及TCP状态变迁图中的一些特殊状态。
本文主要看看TCP数据传输过程中需要了解的一些重要点:
在开始介绍上面列出的内容之前,先看看实验程序的运行。
本文的例子代码是基于"动手学习TCP:客户端状态变迁"文章中的例子。
首先,修改了"BuildTcpPacket"这个函数,增加了两个功能:
public static Packet BuildTcpPacket(EndPointInfo endPointInfo, TcpControlBits tcpControlBits, List<TcpOption> tcpOptionList = null, bool withPayload = false, string payloadData = "") { EthernetLayer ethernetLayer = new EthernetLayer { Source = new MacAddress(endPointInfo.SourceMac), Destination = new MacAddress(endPointInfo.DestinationMac), EtherType = EthernetType.None, // Will be filled automatically. }; IpV4Layer ipV4Layer = new IpV4Layer { Source = new IpV4Address(endPointInfo.SourceIp), CurrentDestination = new IpV4Address(endPointInfo.DestinationIp), Fragmentation = IpV4Fragmentation.None, HeaderChecksum = null, // Will be filled automatically. Identification = 123, Options = IpV4Options.None, Protocol = null, // Will be filled automatically. Ttl = 10, TypeOfService = 0, }; TcpLayer tcpLayer = new TcpLayer { SourcePort = endPointInfo.SourcePort, DestinationPort = endPointInfo.DestinationPort, Checksum = null, // Will be filled automatically. SequenceNumber = seqNum, AcknowledgmentNumber = ackNum, ControlBits = tcpControlBits, Window = windowSize, UrgentPointer = 0, Options = (tcpOptionList == null) ? TcpOptions.None : new TcpOptions(tcpOptionList), }; PacketBuilder builder; if (withPayload) { PayloadLayer payloadLayer = new PayloadLayer { Data = new Datagram(System.Text.Encoding.ASCII.GetBytes(payloadData)), }; builder = new PacketBuilder(ethernetLayer, ipV4Layer, tcpLayer, payloadLayer); return builder.Build(DateTime.Now); } builder = new PacketBuilder(ethernetLayer, ipV4Layer, tcpLayer); return builder.Build(DateTime.Now); }
代码其余的改动发生在"PacketHandler"函数中:
private static void PacketHandler(PacketCommunicator communicator, EndPointInfo endPointInfo, bool clientToSendFin = true)
增加了对于"ESTABLISHED"状态下收到数据包的处理,主要作用就是发送一个[ACK]包对收到的数据包进行确认。
case TcpControlBits.Acknowledgment: if (tcpStatus == TCPStatus.FIN_WAIT_1) { tcpStatus = TCPStatus.FIN_WAIT_2; Utils.PacketInfoPrinter(packet, tcpStatus); } else if (tcpStatus == TCPStatus.LAST_ACK) { tcpStatus = TCPStatus.CLOSED; Utils.PacketInfoPrinter(packet, tcpStatus); running = false; } else if (tcpStatus == TCPStatus.ESTABLISHED) { //print the data received from server Console.WriteLine(packet.Ethernet.IpV4.Tcp.Payload.ToString()); communicator.SendPacket(Utils.BuildTcpResponsePacket(packet, TcpControlBits.Acknowledgment)); } break; case (TcpControlBits.Acknowledgment | TcpControlBits.Push): if (tcpStatus == TCPStatus.ESTABLISHED) { //print the data received from server Console.WriteLine(packet.Ethernet.IpV4.Tcp.Payload.ToString()); communicator.SendPacket(Utils.BuildTcpResponsePacket(packet, TcpControlBits.Acknowledgment)); } break;
代码修改好之后,运行代码。
通过console端可以看到,在连接为"ESTABLISHED"状态下,客户端收到的来自服务端的字节数。
通过Wireshark抓包可以看到,在连接建立请求包[SYN]中增加了MSS的设置,并且以后的数据传出中,TCP数据包的payload长度最大就是MSS的值。
下面就开始介绍上面实验中涉及的TCP数据传输的知识点。
在网络上传输的数据包是有大小限制,这里就需要知道TCP分段和IP分片的概念了。
跟这两个概念紧密相关的就是MSS(Maximum Segment Size)和MTU(Maximum Transmission Unit)这两个指标了,这两个指标的值大小直接决定了TCP分段和IP分片。
下面分别看看MSS和MTU。
首先来看看MTU。
以太网和802.3对数据帧的长度都有一个限制,最大值分别是1500和1492个字节。链路层的这个指标称作MTU(注意MTU是链路层的概念),不同类型的网络大多数都有一个上限。
如果网络层(IP层)有一个数据报需要传输,且数据的长度比链路层的 MTU还大,那么网络层(IP层)就要进行分片(fragmentation),把数据报分成若干片,保证每一个分片都小于MTU;目的端的网络层(IP层)会对收到的分片进行重新组装。
也就是说,分片和重新组装过程发生在网络层(IP层),所以对运输层(TCP/UDP)是透明的。
下面看看通过ping命令演示IP分片,ping命令属于ICMP(Internet Control Messages Protocol)协议:
Wireshark的结果为下,这5000个字节的数据被分别放在了四个IP分片中,每个分片(最后一个分片除外)中的数据长度等于1480(1500 – 20[IP header]):
IP分片的问题:IP分片有一个很大的问题,由于IP层本身没有超时重传机制,即使只丢失一片数据也要重新传整个数据报。也就是说,对于上面截图中的4个Frame,任何一个丢失了,另外3个都需要进行重传。
使用UDP和ICMP的时候很容易导致IP分片,因为UDP和ICMP是不考虑MTU和分片的,而是把这些工作都丢给了网络层(IP层);但是,为了减少IP分片对TCP的影响,在TCP中提出了MSS来试图避免IP分片。
MSS就是TCP数据包每次能够传输的最大数据分段。
为了达到最佳的传输效能TCP协议在建立连接的时候通常要协商双方的MSS值,这个值TCP协议在实现的时候往往用MTU值代替(需要减去IP数据包首部的大小20Bytes和TCP数据段的首部20Bytes),所以往往MSS为1460。通讯双方会根据双方提供的MSS值得最小值确定为这次连接的最大MSS值。
回到本文开始的例子,在建立TCP连接的时候,客户端指定了MSS为800,服务端指定的MSS为1460。经过协商后,双方采用了较小的MSS,所以以后的数据包长度最到为800字节。TCP就是通过这种方式来避免IP分片的。
再看一个MSS的例子,通过Wireshark抓取了一段HTTP请求,通过GET方法请求jquery的一组数据包。
通过下面可以看到,当应用层有一个超过MSS的数据需要发送的时候,TCP会把应用层的数据分成多个TCP分段然后发送出去。每一个分段包都包含TCP首部,然后传递给网络层进一步增加IP首部。
通过上面可以看到TCP分段和IP分片有下面的主要区别:
TCP传输的可靠性是通过Seq和Ack号来进行保证的,所以可以看出Seq和Ack号的重要性。
文章开始的实验中,另一个需要注意的地方就是Seq和Ack号的变化。
在前面TCP连接的相关文章中已经介绍了连接建立和终止时候Seq和Ack号的变化,可以总结得到下面公式:
确认包的Ack = 待确认包(特殊标志包)的Seq + 1
从Wireshark的截图中可以看到在数据传输中Seq和Ack号的变化。
对于数据包的确认,可以使用下面的方式进行计算:
确认包的Ack = 待确认数据包的Seq + 待确认数据包的数据长度(Len)
在介绍TCP终止连接的时候,提到了由于TCP是全双工的,所以需要经过四次挥手才能关闭TCP连接。
TCP中有一个半连接的概念,就是TCP连接的一端在结束它的发送后,还能接收来自另一端数据。
还是回到文章开始的例子,服务端发出了终止TCP连接的请求[FIN, ACK],客户端进行了确认,到此服务端到客户端方向的TCP连接就关闭了。
但是,随后客户端向服务端发送了一段长度为480字节的数据,然后才关闭客户端到服务端方向的TCP连接。
本文主要介绍了TCP数据传输中的几个重要的概念。
通过这篇文章,一定能很好的认识TCP分段和IP分片的区别,以及MSS和MTU的关系。