PCA和白化练习之处理二维数据

在很多情况下,我们要处理的数据的维度很高,需要提取主要的特征进行分析这就是PCA(主成分分析),白化是为了减少各个特征之间的冗余,因为在许多自然数据中,各个特征之间往往存在着一种关联,为了减少特征之间的关联,需要用到所谓的白化(whitening).

首先下载数据pcaData.rar,下面要对这里面包含的45个2维样本点进行PAC和白化处理,数据中每一列代表一个样本点。

第一步 画出原始数据:

 

PCA和白化练习之处理二维数据_第1张图片

第二步:执行PCA,找到数据变化最大的方向:

PCA和白化练习之处理二维数据_第2张图片

第三步:将原始数据投射到上面找的两个方向上:

PCA和白化练习之处理二维数据_第3张图片

第四步:降维,此例中把数据由2维降维到1维,画出降维后的数据:

PCA和白化练习之处理二维数据_第4张图片

第五步:PCA白化处理:

PCA和白化练习之处理二维数据_第5张图片

第六步:ZCA白化处理:

PCA和白化练习之处理二维数据_第6张图片

下面是程序matlab源代码:

 1 close all;clear all;clc;  2 
 3 %%================================================================
 4 %% Step 0: Load data  5 %  We have provided the code to load data from pcaData.txt into x.  6 %  x is a 2 * 45 matrix, where the kth column x(:,k) corresponds to  7 % the kth data point.Here we provide the code to load natural image data into x.  8 %  You do not need to change the code below.  9 
 10 x = load('pcaData.txt','-ascii');  11 figure(1);  12 scatter(x(1, :), x(2, :));  13 title('Raw data');  14 
 15 
 16 %%================================================================
 17 %% Step 1a: Implement PCA to obtain U  18 %  Implement PCA to obtain the rotation matrix U, which is the eigenbasis  19 % sigma.  20 
 21 % -------------------- YOUR CODE HERE -------------------- 
 22 u = zeros(size(x, 1)); % You need to compute this
 23 
 24 sigma = x * x'/ size(x, 2);
 25 [u,S,V] = svd(sigma);  26 
 27 
 28 
 29 % -------------------------------------------------------- 
 30 hold on  31 plot([0 u(1,1)], [0 u(2,1)]);  32 plot([0 u(1,2)], [0 u(2,2)]);  33 scatter(x(1, :), x(2, :));  34 hold off  35 
 36 %%================================================================
 37 %% Step 1b: Compute xRot, the projection on to the eigenbasis  38 % Now, compute xRot by projecting the data on to the basis defined  39 % by U. Visualize the points by performing a scatter plot.  40 
 41 % -------------------- YOUR CODE HERE -------------------- 
 42 xRot = zeros(size(x)); % You need to compute this
 43 xRot = u' * x;
 44 
 45 % -------------------------------------------------------- 
 46 
 47 % Visualise the covariance matrix. You should see a line across the  48 % diagonal against a blue background.  49 figure(2);  50 scatter(xRot(1, :), xRot(2, :));  51 title('xRot');  52 
 53 %%================================================================
 54 %% Step 2: Reduce the number of dimensions from 2 to 1.  55 %  Compute xRot again (this time projecting to 1 dimension).  56 % Then, compute xHat by projecting the xRot back onto the original axes  57 % to see the effect of dimension reduction  58 
 59 % -------------------- YOUR CODE HERE -------------------- 
 60 k = 1; % Use k = 1 and project the data onto the first eigenbasis  61 xHat = zeros(size(x)); % You need to compute this
 62 z = u(:, 1:k)' * x;
 63 xHat = u(:,1:k) * z;  64 
 65 % -------------------------------------------------------- 
 66 figure(3);  67 scatter(xHat(1, :), xHat(2, :));  68 title('xHat');  69 
 70 
 71 %%================================================================
 72 %% Step 3: PCA Whitening  73 % Complute xPCAWhite and plot the results.  74 
 75 epsilon = 1e-5;  76 % -------------------- YOUR CODE HERE -------------------- 
 77 xPCAWhite = zeros(size(x)); % You need to compute this
 78 
 79 xPCAWhite = diag(1 ./ sqrt(diag(S) + epsilon)) * xRot;  80 
 81 
 82 
 83 % -------------------------------------------------------- 
 84 figure(4);  85 scatter(xPCAWhite(1, :), xPCAWhite(2, :));  86 title('xPCAWhite');  87 
 88 %%================================================================
 89 %% Step 3: ZCA Whitening  90 % Complute xZCAWhite and plot the results.  91 
 92 % -------------------- YOUR CODE HERE -------------------- 
 93 xZCAWhite = zeros(size(x)); % You need to compute this
 94 
 95 xZCAWhite = u * xPCAWhite;  96 % -------------------------------------------------------- 
 97 figure(5);  98 scatter(xZCAWhite(1, :), xZCAWhite(2, :));  99 title('xZCAWhite'); 100 
101 %% Congratulations! When you have reached this point, you are done!
102 %  You can now move onto the next PCA exercise. :)

 

你可能感兴趣的:(PCA和白化练习之处理二维数据)