- 逻辑结构学派一(五个基础理论)
刘海东刘海东
人工智能
逻辑结构学派一(五个基础理论)作者:刘海东,中国广东技术师范大学摘要本篇论文通过《逻辑结构学派的宗旨》、《逻辑结构学》、《逻辑工程学》、《逻辑方程结构图理论》、《仿生逻辑理论》五个领域的研究提出《逻辑结构学派的宗旨》、《主观能动性结构》、《主观能动性结构工程》、《赋予生命的逻辑方程结构图》、《仿生逻辑》五个基础经典理论,让人工智能、机器人、智能社会三个主体的基础研究有了方向、方法和判断标准。关键词
- 科学的第五范式:人工智能如何重塑发现之疆
田园Coder
人工智能科普人工智能科普
在人类探索未知的壮阔史诗中,科学方法的演进如同照亮迷雾的灯塔。从基于经验的第一范式(描述自然现象),到以理论推演为核心的第二范式(牛顿定律、麦克斯韦方程),再到以计算机模拟为标志的第三范式(气候模型、分子动力学),直至以大数据挖掘为驱动的第四范式(基因组学、高能物理),每一次范式跃迁都极大地拓展了认知的疆界。如今,我们正站在一个更恢弘转折的门槛上——第五范式:人工智能驱动的科学(AIforScie
- 代码随想录算法训练营第四十四天|动态规划part11
1143.最长公共子序列题目链接:1143.最长公共子序列-力扣(LeetCode)文章讲解:代码随想录思路:其实就是求两个字符串的最长公共子序列的长度与公共子数组的区别是可以不连续,顺序对就可以状态转移方程不一样定义dp[i][j]表示text1的0到i-1与text2的0到j-1的最长公共子序列的长度text1[i-1]==text2[j-1]dp[i][j]=dp[i-1][j-1]+1否则
- 逻辑回归详解:从原理到实践
在机器学习的广阔领域中,逻辑回归(LogisticRegression)虽名为“回归”,实则是一种用于解决二分类(0或1)问题的有监督学习算法。它凭借简单易懂的原理、高效的计算性能以及出色的解释性,在数据科学、医学诊断、金融风控等诸多领域中得到了广泛应用。接下来,我们将从多个维度深入剖析逻辑回归,带你揭开它的神秘面纱。一、逻辑回归的基本概念在回归分析中,线性回归是通过构建线性方程来预测连续值,例如
- 人形机器人运动控制技术演进:从强化学习到神经微分方程的前沿解析
1.引言:人形运动控制的挑战与范式迁移人形机器人需在非结构化环境中实现双足行走、跑步、跳跃等复杂动作,其核心问题可归结为高维连续状态-动作空间的实时优化。传统方法(如基于模型的预测控制MPC)依赖精确的动力学建模,但在实际系统中面临以下瓶颈:模型失配:复杂接触动力学(如足-地交互)难以显式建模;计算瓶颈:高维非线性优化难以满足实时性需求;环境扰动敏感:传统控制器对未知干扰的鲁棒性不足。近年来,以强
- MIT 6.S184 Lec01 Flow and Diffusion Models
克斯维尔的明天_
机器学习人工智能
MIT6.S184Lec01FlowandDiffusionModels本节中,我们将描述如何通过模拟一个适当构造的微分方程来获得所需的转换。例如,流匹配和扩散模型分别涉及模拟常微分方程(ODE)和随机微分方程(SDE)。因此,本节的目标是定义和构建这些生成模型。具体来说,我们首先定义ODE和SDE,并讨论它们的模拟。其次,我们描述如何使用深度神经网络对ODE/SDE进行参数化。从中推导出流模型和
- 强化学习贝尔曼方程推导
愤怒的可乐
强化学习人工智能概率论机器学习算法
引言强化学习中贝尔曼方程的重要性就不说了,本文利用高中生都能看懂的数学知识推导贝尔曼方程。回报折扣回报GtG_tGt的定义为:Gt=Rt+1+γRt+2+γ2Rt+3+⋯=∑k=0∞γkRt+k+1(1)G_t=R_{t+1}+\gammaR_{t+2}+\gamma^2R_{t+3}+\cdots=\sum_{k=0}^\infty\gamma^kR_{t+k+1}\tag1Gt=Rt+1+γR
- 求解偏微分方程的Fourier展开式
解答:(1)求解的Fourier展开式考虑边值问题:∂2u∂t2=∂∂x((cosx+2)∂u∂x)−(sinπxl)u,(x,t)∈(0,l)×(0,T),\frac{\partial^2u}{\partialt^2}=\frac{\partial}{\partialx}\left((\cosx+2)\frac{\partialu}{\partialx}\right)-\left(\sin\
- 函数在球内恒为零的证明
weixin_30777913
算法
设函数u(x)u(x)u(x)在闭球B(0,1)={x∈Rn:∣x∣≤1}B(0,1)=\{x\in\mathbb{R}^n:|x|\leq1\}B(0,1)={x∈Rn:∣x∣≤1}内满足方程Δu=λu\Deltau=\lambdauΔu=λu,其中λ<0\lambda<0λ<0为常数,且在半径为δ\deltaδ的开球B(0,δ)={x∈Rn:∣x∣<δ}B(0,\delta)=\{x\in\m
- 强化学习【chapter0】-学习路线图
明朝百晓生
算法人工智能机器学习
前言:主要总结一下西湖大学赵老师的课程【强化学习的数学原理】课程:从零开始到透彻理解(完结)_哔哩哔哩_bilibili1️⃣基础阶段(Ch1-Ch7):掌握表格型算法,理解TD误差与贝尔曼方程2️⃣进阶阶段(Ch8-Ch9):动手实现DQN/策略梯度,熟悉PyTorch/TensorFlow3️⃣前沿阶段(Ch10:阅读论文(OpenAISpinningUp/RLlib文档)Chapter1:基
- #19ACM第三次周赛补题赛de题解呐#
桦hua呐
秃头hua的题解
我真的太low了,谁能教教我C.D.E.?A.我是个签到题!这题的确签到,一共y/n两种情况,运气不好WA一次,运气好直接过,但相信聪明的你们,一定去探索了方程式的规律,才不会像我一样盲猜n就对了,嘿嘿,看题↓描述:判断x^4+y^4=z^4,x,y,z是否存在正整数解输入:无输出:存在输出“YES”,不存在输出"NO"直接送上hua的无脑代码↓#includeintmain(){printf("
- 零基础学土壤物理建模|Hydrus2D、Hydrus3D实操教程+参数设置技巧
weixin_贾
地下水土壤软件合集Hydrus3D模型HYDRUS2D模型
一、Hydrus简介发展历史HYDRUS2D/3D界面和功能介绍二、土壤物理基础知识1、土壤水流土壤物理性质土壤水的能量状态土壤水分特征曲线饱和土壤中的水流非饱和土壤中的水流Richards方程土壤水力学特性的缩放土壤水分入渗土壤水分蒸发滞后现象根系吸水水分胁迫和盐分胁迫双孔隙度/双渗透率模型2、溶质运移土壤溶质及其迁移转化形式对流弥散方程(CDE)土壤溶质穿透曲线溶质在土壤中的反应非吸附溶质的迁
- 时空屏障崩塌:14:28深圳AI-BioFab平行宇宙保卫战全纪实
HeartException
人工智能
前言前些天发现了一个巨牛的人工智能免费学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站《时空屏障崩塌:14:28深圳AI-BioFab平行宇宙保卫战全纪实》副标题:抗癌疫苗冷链门关闭前3秒遭量子生物武器袭击,中国科学家启动长城时空盾改写人类文明存续方程2025年7月2日14:28:57光明科学城虫洞警报第184支疫苗即将注入液氮罐的刹那,B3层量子钟突现重影!14:28/15:4
- matlab有限元相场算法
bubiyoushang888
算法matlab机器学习
研究的目的是证明一种有限元相场算法,其中相场方程是完全耦合并同时求解的。不过,在这种情况下,完全耦合的方程是弹性和非守恒的阶参数;然而,该方法可作为其他相场模型完全耦合公式的模板。这是求解具有弹性不均匀性的Allen-Cohn方程的主要程序。有限元算法。该算法解决了非保守阶参数的演化问题。全耦合模式下应力列场的演化。取决于代码中Isolve参数的选择:对于Isolve-1,代码以长手格式和非优化模
- 2023考研数一真题及答案
猿六凯
考研
历年数一真题及答案下载直通车曲线y=xln(e+1x−1)y=x\ln(e+\frac{1}{x-1})y=xln(e+x−11)的渐近线方程为()(A)y=x+ey=x+ey=x+e(B)y=x+1ey=x+\frac{1}{e}y=x+e1©y=xy=xy=x(D)y=x−1ey=x-\frac{1}{e}y=x−e1若微分方程y′′+ay′+by=0y''+ay'+by=0y′′+ay′+
- 感知机学习
Collin_NLP
机器学习Python
基本概念:感知机是二类分类的线性分类模型,对应于特征空间中将实例划分为正负两类的分离超平面,属判别模型。感知机学习旨在求出将训练数据进行线性划分的分离超平面。感知机的定义:从输入空间Rn到输出空间{+1,-1}的函数映射:f(x)=sign(w*x+b)模型参数:w----权值向量b----偏置wx+b=0-----分离超平面方程数据集{(xi,yi)}with1给定训练集,正例x1=(3,3)x
- 云计算在可视化非线性偏微分方程动力学中的应用:拟线性和半线性示例-AI云计算数值分析和代码验证
亚图跨际
AI云计算人工智能
“拟线性”和“半线性”代表了非线性偏微分方程(PDEs)这一大类中的重要分类。其区别主要在于非线性的表现形式,特别是与未知函数的最高阶导数之间的关系。在偏微分方程的研究中,将其分为线性、半线性、拟线性和完全非线性至关重要,因为用于分析和求解它们(例如,解的存在性、唯一性、正则性、数值方法)的数学技术根据其线性性质而显著不同。非线性偏微分方程通常比线性偏微分方程更难求解和分析,即使在非线性类别中,由
- 模拟多维物理过程与基于云的数值分析-AI云计算数值分析和代码验证
亚图跨际
AI人工智能云计算
高维输运与扩散方程,涵盖了严格的扩散极限、多维扩散理论、先进的数值和基于粒子的模拟方法,以及分数阶/电报式推广,为广泛的科学和工程领域中复杂输运现象的建模、分析和模拟提供了强大的工具。高维输运和扩散方程涵盖了输运方程的严格扩散极限、结合随机和偏微分方程工具的多维扩散理论、先进的数值和基于粒子的模拟方法、分数阶和电报式输运的推广,以及在地球物理和工程系统中的应用。这些框架为建模、分析和模拟许多科学和
- 《高等数学》(同济大学·第7版)第十二章 无穷级数 第五节函数的幂级数展开式的应用
没有女朋友的程序员
高等数学
一、幂级数展开的核心作用幂级数展开不仅是理论工具,更是解决实际问题的计算利器,主要应用包括:近似计算:用多项式逼近复杂函数(如计算函数值、积分值)。求解微分方程:将解表示为幂级数形式,逐项代入方程求解。求和与积分:将难以处理的级数转化为已知函数的展开式。分析函数性质:通过展开式研究函数的极值、拐点等。二、典型应用详解近似计算函数值原理:用泰勒多项式的前几项近似代替原函数。关键步骤:写出函数的麦克劳
- 2.2. 泛函分析讲义I-度量空间概述
吉星照MoMo
实变泛函与测度理论数学建模
泛函分析的三大空间自然是:度量空间、线性赋范空间和Hilbert空间,由[泛函分析的起源与发展],我们知道引入度量空间和希尔伯特空间的动机是截然不同的度量空间是Frechet有意识地去引入一种抽象理论,使得这种理论能够将康托尔,沃尔泰拉以及阿尔泽拉等人的工作统一起来.内积空间是在求解积分方程的过程中创造出来的,赋范线性空间是巴拿赫系统地发展了Frechet的思想,以及利用了Hilbert空间l2,
- 16、流体力学数值模拟
404Feels
流体力学数值模拟纳维-斯托克斯方程
流体力学数值模拟1.流体力学的基本方程流体力学是研究流体(液体和气体)运动规律的学科,其基本方程是纳维-斯托克斯方程(Navier-Stokesequation)。该方程描述了流体的速度、压力、温度等物理量随时间和空间的变化。为了便于数值求解,我们需要将这些方程离散化。以下是纳维-斯托克斯方程的标准形式:[\frac{\partial\mathbf{u}}{\partialt}+(\mathbf{
- 材料力学数值方法:有限元法(FEM)在流体力学中的应用_2024-08-04_00-17-21.Tex
chenjj4003
材料力学算法计算机视觉人工智能机器学习网络
材料力学数值方法:有限元法(FEM)在流体力学中的应用绪论有限元法的基本概念有限元法(FiniteElementMethod,FEM)是一种数值计算方法,用于求解复杂的工程问题,如结构力学、热传导、流体力学等。它将连续的物理域离散化为有限数量的、形状规则的子域,即“有限元”。每个子域内的物理量(如位移、压力、温度等)用多项式函数近似表示,通过在每个子域内应用物理定律(如牛顿第二定律、连续性方程等)
- open3d 使用 RANSAC 算法拟合平面
扶子
python点云处理平面pythonopen3d经验分享点云拟合平面
1、功能介绍:一个python代码演示了如何使用open3d和numpy来完成一个完整的点云平面拟合任务。它包括以下几个主要部分:生成符合某一平面方程的随机点云数据、使用RANSAC算法对这些点云进行平面拟合、可视化原始点云和平面拟合结果2、代码部分:importnumpyasnpimportopen3daso3d#生成随机点云np.random.seed(42)n_points=100#假设这些
- Deepoc大模型在半导体设计优化与自动化
Deepoch
自动化运维人工智能机器人单片机ai科技
大模型在半导体设计领域的应用已形成多维度技术渗透,其核心价值在于通过数据驱动的方式重构传统设计范式。以下从技术方向、实现路径及行业影响三个层面展开详细分析:参数化建模与动态调优基于物理的深度学习模型(如PINNs)将器件物理方程嵌入神经网络架构,实现工艺参数与电学性能的非线性映射建模。通过强化学习框架(如PPO算法)动态调整掺杂浓度、栅极长度等关键参数,在3nm节点下实现驱动电流提升18%的同时降
- 《高等数学》(同济大学·第7版)第七章 微分方程 第四节一阶线性微分方程
没有女朋友的程序员
高等数学
好的,这是将您提供的高等数学教案内容中的LaTeX公式转换为纯文本格式后的版本:同学们好!今天我们学习《高等数学》第七章第四节“一阶线性微分方程”。这是一阶微分方程中最重要、应用最广泛的一类方程,掌握它的解法对后续学习(如微分方程的应用、高阶线性微分方程)至关重要。我会用最通俗的语言,结合大量例子,帮你彻底掌握“一阶线性微分方程”的定义、解法和核心思想。一、一阶线性微分方程的定义:长什么样?1.标
- 蔡高厅老师 - 高等数学-阅读笔记 - 01 - 前言、函数【视频第01、02、03、】
Franklin
数学线性代数
高等数学前言;196学时,每周6课主要内容:上册一元、多元函数数,微分学、积分学、矢量代数、空间解析几何无穷级数、微分方程,多元函数微分学和积分学目的:高等数学3基:1高等数学的基本知识2高度数学的基本理论3高等数学的基本计算方法提高数学素养培养:抽象思维、逻辑推理、辩证的思想方法、空间想象能力、分析问题、解决问题的能力为进一步学习打下必要的学习基础和初等数学不同,研究的不是常量而是变量,变量和变
- 《高等数学》(同济大学·第7版)第九章 多元函数微分法及其应用第四节隐函数的求导公式
没有女朋友的程序员
高等数学
以下是将含LaTeX标记的内容转为纯文本的版本:同学们好!今天我们学习《高等数学》(同济·第7版)第九章第四节隐函数的求导公式。我会用最通俗的语言和具体例子,带你彻底理解这个核心概念。如果中途有疑问,随时提出,我们一步步解决!一、隐函数是什么?为什么需要它?1.显函数vs隐函数显函数:直接写出因变量和自变量的关系,例如:y=f(x)或z=f(x,y)隐函数:因变量和自变量的关系隐含在一个方程中,例
- 高等数学》(同济大学·第7版)第七章 微分方程 第五节可降阶的高阶微分方程
没有女朋友的程序员
高等数学
好的,这是将您提供的高等数学第七章第五节教案内容中的LaTeX公式转换为纯文本格式后的版本:同学们好!今天我们学习《高等数学》第七章第五节“可降阶的高阶微分方程”。高阶微分方程(如二阶、三阶)直接求解困难,但许多方程可以通过“降阶”转化为低阶方程(如一阶方程)来求解。本节重点讲解三类可降阶的高阶微分方程,掌握它们的解法对后续学习至关重要。我会用最通俗的语言,结合大量例子,帮你彻底掌握。一、可降阶高
- 高等数学》(同济大学·第7版)第七章 微分方程 第三节齐次方程
没有女朋友的程序员
高等数学
同学们好!今天我们学习《高等数学》第七章第三节“齐次方程”。这是微分方程中一类重要的可转化方程,掌握它的解法对后续学习(如线性微分方程)有重要意义。我会用最通俗的语言,结合大量例子,帮你彻底掌握“齐次方程”的定义、特点和解法。一、齐次方程的定义:什么是“齐次”?1.齐次方程的两种含义在微积分中,“齐次”有两种常见含义,但这里我们特指一阶微分方程中的齐次方程:若一阶微分方程可以写成以下形式:dydx
- 创意Python爱心代码
卖血买老婆
Python专栏python开发语言
目录一、用字符在控制台打印爱心图案1.1方法1:简单星号爱心说明1.2方法2:调整字符和形状二、turtle绘制爱心2.1turtle画心形及写字说明2.2动态跳动爱心三、用Matplotlib画心形曲线3.1标准心形曲线3.2LOVE动画心形(进阶)四、参数方程自定义爱心(数学美)心形参数方程公式五、更多创意:二维码嵌入、爱心表白墙六、总结完整参考目录用Python创意绘制爱心(Heart)的多
- HQL之投影查询
归来朝歌
HQLHibernate查询语句投影查询
在HQL查询中,常常面临这样一个场景,对于多表查询,是要将一个表的对象查出来还是要只需要每个表中的几个字段,最后放在一起显示?
针对上面的场景,如果需要将一个对象查出来:
HQL语句写“from 对象”即可
Session session = HibernateUtil.openSession();
- Spring整合redis
bylijinnan
redis
pom.xml
<dependencies>
<!-- Spring Data - Redis Library -->
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-redi
- org.hibernate.NonUniqueResultException: query did not return a unique result: 2
0624chenhong
Hibernate
参考:http://blog.csdn.net/qingfeilee/article/details/7052736
org.hibernate.NonUniqueResultException: query did not return a unique result: 2
在项目中出现了org.hiber
- android动画效果
不懂事的小屁孩
android动画
前几天弄alertdialog和popupwindow的时候,用到了android的动画效果,今天专门研究了一下关于android的动画效果,列出来,方便以后使用。
Android 平台提供了两类动画。 一类是Tween动画,就是对场景里的对象不断的进行图像变化来产生动画效果(旋转、平移、放缩和渐变)。
第二类就是 Frame动画,即顺序的播放事先做好的图像,与gif图片原理类似。
- js delete 删除机理以及它的内存泄露问题的解决方案
换个号韩国红果果
JavaScript
delete删除属性时只是解除了属性与对象的绑定,故当属性值为一个对象时,删除时会造成内存泄露 (其实还未删除)
举例:
var person={name:{firstname:'bob'}}
var p=person.name
delete person.name
p.firstname -->'bob'
// 依然可以访问p.firstname,存在内存泄露
- Oracle将零干预分析加入网络即服务计划
蓝儿唯美
oracle
由Oracle通信技术部门主导的演示项目并没有在本月较早前法国南斯举行的行业集团TM论坛大会中获得嘉奖。但是,Oracle通信官员解雇致力于打造一个支持零干预分配和编制功能的网络即服务(NaaS)平台,帮助企业以更灵活和更适合云的方式实现通信服务提供商(CSP)的连接产品。这个Oracle主导的项目属于TM Forum Live!活动上展示的Catalyst计划的19个项目之一。Catalyst计
- spring学习——springmvc(二)
a-john
springMVC
Spring MVC提供了非常方便的文件上传功能。
1,配置Spring支持文件上传:
DispatcherServlet本身并不知道如何处理multipart的表单数据,需要一个multipart解析器把POST请求的multipart数据中抽取出来,这样DispatcherServlet就能将其传递给我们的控制器了。为了在Spring中注册multipart解析器,需要声明一个实现了Mul
- POJ-2828-Buy Tickets
aijuans
ACM_POJ
POJ-2828-Buy Tickets
http://poj.org/problem?id=2828
线段树,逆序插入
#include<iostream>#include<cstdio>#include<cstring>#include<cstdlib>using namespace std;#define N 200010struct
- Java Ant build.xml详解
asia007
build.xml
1,什么是antant是构建工具2,什么是构建概念到处可查到,形象来说,你要把代码从某个地方拿来,编译,再拷贝到某个地方去等等操作,当然不仅与此,但是主要用来干这个3,ant的好处跨平台 --因为ant是使用java实现的,所以它跨平台使用简单--与ant的兄弟make比起来语法清晰--同样是和make相比功能强大--ant能做的事情很多,可能你用了很久,你仍然不知道它能有
- android按钮监听器的四种技术
百合不是茶
androidxml配置监听器实现接口
android开发中经常会用到各种各样的监听器,android监听器的写法与java又有不同的地方;
1,activity中使用内部类实现接口 ,创建内部类实例 使用add方法 与java类似
创建监听器的实例
myLis lis = new myLis();
使用add方法给按钮添加监听器
- 软件架构师不等同于资深程序员
bijian1013
程序员架构师架构设计
本文的作者Armel Nene是ETAPIX Global公司的首席架构师,他居住在伦敦,他参与过的开源项目包括 Apache Lucene,,Apache Nutch, Liferay 和 Pentaho等。
如今很多的公司
- TeamForge Wiki Syntax & CollabNet User Information Center
sunjing
TeamForgeHow doAttachementAnchorWiki Syntax
the CollabNet user information center http://help.collab.net/
How do I create a new Wiki page?
A CollabNet TeamForge project can have any number of Wiki pages. All Wiki pages are linked, and
- 【Redis四】Redis数据类型
bit1129
redis
概述
Redis是一个高性能的数据结构服务器,称之为数据结构服务器的原因是,它提供了丰富的数据类型以满足不同的应用场景,本文对Redis的数据类型以及对这些类型可能的操作进行总结。
Redis常用的数据类型包括string、set、list、hash以及sorted set.Redis本身是K/V系统,这里的数据类型指的是value的类型,而不是key的类型,key的类型只有一种即string
- SSH2整合-附源码
白糖_
eclipsespringtomcatHibernateGoogle
今天用eclipse终于整合出了struts2+hibernate+spring框架。
我创建的是tomcat项目,需要有tomcat插件。导入项目以后,鼠标右键选择属性,然后再找到“tomcat”项,勾选一下“Is a tomcat project”即可。具体方法见源码里的jsp图片,sql也在源码里。
补充1:项目中部分jar包不是最新版的,可能导
- [转]开源项目代码的学习方法
braveCS
学习方法
转自:
http://blog.sina.com.cn/s/blog_693458530100lk5m.html
http://www.cnblogs.com/west-link/archive/2011/06/07/2074466.html
1)阅读features。以此来搞清楚该项目有哪些特性2)思考。想想如果自己来做有这些features的项目该如何构架3)下载并安装d
- 编程之美-子数组的最大和(二维)
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
import java.util.Random;
public class MaxSubArraySum2 {
/**
* 编程之美 子数组之和的最大值(二维)
*/
private static final int ROW = 5;
private stat
- 读书笔记-3
chengxuyuancsdn
jquery笔记resultMap配置ibatis一对多配置
1、resultMap配置
2、ibatis一对多配置
3、jquery笔记
1、resultMap配置
当<select resultMap="topic_data">
<resultMap id="topic_data">必须一一对应。
(1)<resultMap class="tblTopic&q
- [物理与天文]物理学新进展
comsci
如果我们必须获得某种地球上没有的矿石,才能够进行某些能量输出装置的设计和建造,而要获得这种矿石,又必须首先进行深空探测,而要进行深空探测,又必须获得这种能量输出装置,这个矛盾的循环,会导致地球联盟在与宇宙文明建立关系的时候,陷入困境
怎么办呢?
 
- Oracle 11g新特性:Automatic Diagnostic Repository
daizj
oracleADR
Oracle Database 11g的FDI(Fault Diagnosability Infrastructure)是自动化诊断方面的又一增强。
FDI的一个关键组件是自动诊断库(Automatic Diagnostic Repository-ADR)。
在oracle 11g中,alert文件的信息是以xml的文件格式存在的,另外提供了普通文本格式的alert文件。
这两份log文
- 简单排序:选择排序
dieslrae
选择排序
public void selectSort(int[] array){
int select;
for(int i=0;i<array.length;i++){
select = i;
for(int k=i+1;k<array.leng
- C语言学习六指针的经典程序,互换两个数字
dcj3sjt126com
c
示例程序,swap_1和swap_2都是错误的,推理从1开始推到2,2没完成,推到3就完成了
# include <stdio.h>
void swap_1(int, int);
void swap_2(int *, int *);
void swap_3(int *, int *);
int main(void)
{
int a = 3;
int b =
- php 5.4中php-fpm 的重启、终止操作命令
dcj3sjt126com
PHP
php 5.4中php-fpm 的重启、终止操作命令:
查看php运行目录命令:which php/usr/bin/php
查看php-fpm进程数:ps aux | grep -c php-fpm
查看运行内存/usr/bin/php -i|grep mem
重启php-fpm/etc/init.d/php-fpm restart
在phpinfo()输出内容可以看到php
- 线程同步工具类
shuizhaosi888
同步工具类
同步工具类包括信号量(Semaphore)、栅栏(barrier)、闭锁(CountDownLatch)
闭锁(CountDownLatch)
public class RunMain {
public long timeTasks(int nThreads, final Runnable task) throws InterruptedException {
fin
- bleeding edge是什么意思
haojinghua
DI
不止一次,看到很多讲技术的文章里面出现过这个词语。今天终于弄懂了——通过朋友给的浏览软件,上了wiki。
我再一次感到,没有辞典能像WiKi一样,给出这样体贴人心、一清二楚的解释了。为了表达我对WiKi的喜爱,只好在此一一中英对照,给大家上次课。
In computer science, bleeding edge is a term that
- c中实现utf8和gbk的互转
jimmee
ciconvutf8&gbk编码
#include <iconv.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <sys/stat.h>
int code_c
- 大型分布式网站架构设计与实践
lilin530
应用服务器搜索引擎
1.大型网站软件系统的特点?
a.高并发,大流量。
b.高可用。
c.海量数据。
d.用户分布广泛,网络情况复杂。
e.安全环境恶劣。
f.需求快速变更,发布频繁。
g.渐进式发展。
2.大型网站架构演化发展历程?
a.初始阶段的网站架构。
应用程序,数据库,文件等所有的资源都在一台服务器上。
b.应用服务器和数据服务器分离。
c.使用缓存改善网站性能。
d.使用应用
- 在代码中获取Android theme中的attr属性值
OliveExcel
androidtheme
Android的Theme是由各种attr组合而成, 每个attr对应了这个属性的一个引用, 这个引用又可以是各种东西.
在某些情况下, 我们需要获取非自定义的主题下某个属性的内容 (比如拿到系统默认的配色colorAccent), 操作方式举例一则:
int defaultColor = 0xFF000000;
int[] attrsArray = { andorid.r.
- 基于Zookeeper的分布式共享锁
roadrunners
zookeeper分布式共享锁
首先,说说我们的场景,订单服务是做成集群的,当两个以上结点同时收到一个相同订单的创建指令,这时并发就产生了,系统就会重复创建订单。等等......场景。这时,分布式共享锁就闪亮登场了。
共享锁在同一个进程中是很容易实现的,但在跨进程或者在不同Server之间就不好实现了。Zookeeper就很容易实现。具体的实现原理官网和其它网站也有翻译,这里就不在赘述了。
官
- 两个容易被忽略的MySQL知识
tomcat_oracle
mysql
1、varchar(5)可以存储多少个汉字,多少个字母数字? 相信有好多人应该跟我一样,对这个已经很熟悉了,根据经验我们能很快的做出决定,比如说用varchar(200)去存储url等等,但是,即使你用了很多次也很熟悉了,也有可能对上面的问题做出错误的回答。 这个问题我查了好多资料,有的人说是可以存储5个字符,2.5个汉字(每个汉字占用两个字节的话),有的人说这个要区分版本,5.0
- zoj 3827 Information Entropy(水题)
阿尔萨斯
format
题目链接:zoj 3827 Information Entropy
题目大意:三种底,计算和。
解题思路:调用库函数就可以直接算了,不过要注意Pi = 0的时候,不过它题目里居然也讲了。。。limp→0+plogb(p)=0,因为p是logp的高阶。
#include <cstdio>
#include <cstring>
#include <cmath&