吴昊品游戏核心算法 Round 14 —— 推箱子游戏的NP难证明(关卡设计)

   何谓NP难

 NP困难(NP-hard,non-deterministic polynomial-time hard)问题是计算复杂性理论中最重要的复杂性类之一。某个问题被称作NP困难,当且仅当存在一个NP完全问题可以在多项式时间图灵归约到这个问题。

 因为NP困难问题未必可以在多项式的时间内验证一个解的正确性(即不一定是NP问题),因此即使NP完全问题有多项式时间内的解,NP困难问题依然可能没有多项式时间内的解。因此NP困难问题“至少与NPC问题一样难”。

  PSPACE完全

 推箱子的其中一个很重要的魅力来源于推箱子求解问题在计算复杂性理论里是一个 PSPACE 完全问题。在这里不对什么是 PSPACE 完全问题作出解释,但是推箱子的一部分美妙之处可以认为正是来源于它的计算复杂度达到了 PSPACE 完全问题的级别。具体表现就是可以设计出很多不同模式的关卡,而且我们目前所涉及到的模式只是一小部分,还有很广阔的空间等待我们去探索。另外一个表现就 是存在一系列具有指数长度答案(相对于关卡的大小)的关卡,这一类关卡就是推箱子关卡众多模式里面非常有趣的一类,也是本文要讨论的对象。

 指数时间复杂度的推箱子问题

  2009年6月8,我曾在魔方吧论坛发贴子介绍了一类指数长度答案的关卡。无独有偶,约一个月后的2009年7月5日,Matrix67的一片博客文章也介绍了这一关卡。我的贴子和 Matrix67 的博文介绍的关卡都是基于2000年国外的一个关于推箱子问题的解答

 

你可能感兴趣的:(吴昊品游戏核心算法 Round 14 —— 推箱子游戏的NP难证明(关卡设计))