leetCode解题报告5道题(二)

leetcode上比较简单的几道题,不想分开写几篇博文来记录哈,所以写在一起了!!

虽然几道题都比较简单,但感觉自己写得不好,希望博文如果被哪位大神看到,可以留言下写下你的做法!

题目一:

Maximum Depth of Binary Tree

 

Given a binary tree, find its maximum depth.

The maximum depth is the number of nodes along the longest path from the root node down to the farthest leaf node.

题意:给你一个二叉树的根结点,求出树的深度!(递归)


/**
 * Definition for binary tree
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
public class Solution {
    public int maxDepth(TreeNode root) {
        return findMaxDepth(root);
    }
    
    public int findMaxDepth(TreeNode node){
        if (node == null)   //结点为null,返回0
            return 0;
        if (node.left == null && node.right == null)   //如果为叶子结点:返回深度1
            return 1;
        int leftDepth = findMaxDepth(node.left);    //求出左子树的最大深度
        int rightDepth = findMaxDepth(node.right);  //求出右子树的最大深度
        return leftDepth > rightDepth ? leftDepth+1 : rightDepth+1; //比较左右子树的深度,取最大值+1 得出整个子树的深度
    }
}


题目二:

Sum Root to Leaf Numbers

 

Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number.

An example is the root-to-leaf path 1->2->3 which represents the number 123.

Find the total sum of all root-to-leaf numbers.

For example,

    1
   / \
  2   3

The root-to-leaf path 1->2 represents the number 12.
The root-to-leaf path 1->3 represents the number 13.

Return the sum = 12 + 13 = 25.

题意:给你一棵二叉树,请你输出所有路径的和,路径上的结点的值连接起来组成这条路径的值(简单的递归算法)


/**
 * Definition for binary tree
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
public class Solution {
    
    public int calSum(TreeNode root, int sum){
        if (root == null)
            return sum;
        if (root.left == null && root.right == null) //循环结束条件
            return sum * 10 + root.val;
        int leftChildSum = 0;
        int rightChildSum = 0;
        if (root.left != null){	//递归调用
            leftChildSum = calSum(root.left, sum * 10 + root.val);
        }
        if (root.right != null){//递归调用
            rightChildSum = calSum(root.right, sum * 10 + root.val);
        }
        
        return (leftChildSum + rightChildSum);
    }
    
    public int sumNumbers(TreeNode root) {
        if (root == null)
            return 0;
        return calSum(root, 0);
    }
}

题目三:

Unique Binary Search Trees

Given n, how many structurally unique BST's (binary search trees) that store values 1...n?

For example,
Given n = 3, there are a total of 5 unique BST's.

   1         3     3      2      1
    \       /     /      / \      \
     3     2     1      1   3      2
    /     /       \                 \
   2     1         2                 3

题意:给你一个数n, 这个n表示二叉树拥有1,2,....,n这n个节点,让你去求不相等的又满足BST(二叉搜索树)特性的二叉树有多少种情况。

分析:递归问题哈

这道题是递归的意思在这里面
 * 情况:
 * n=1  : 只有一种可能,则返回1
 * n=2  : 两种可能返回2;
 * n=3  : 返回5;
 * n>3  : 我们知道,如果一个问题特别大,我们会想办法把它分解成小问题来解决
 * 我们取特殊情况n=4来做下分析
 * 如果n=4, 二叉树根结点的值可以是:1,2,3,4这四种情况
 * 
 * 设root.val 用 i来表示, for循环 i < n, 左子树上的结点数量: i-1, 右子树上的结点数量: n-i
 * 
 * 而当i=1的时候,左子树结点Number: i-1=0 ,右子树结点Number: n-i=4-1=3
 * 此时这种情况得到的二叉树个数便转换成了求右边3个结点拥有的情况数量(递归)
 * 
 * 而当i = 2的时候,左子树结点Number: i-1=1 ,右子树结点Number: n-i=4-2=2
 * 此时这种情况得到的二叉树个数便转换成了求左边情况的个数*右边情况的个数(组合数学)
 * [当然如果左边或者右边有一方为0的话,就返回一支子树的数量就行了]
 * 
 * 而当i = 3的时候,左子树结点Number: i-1=2 ,右子树结点Number: n-i=4-3=1
 * 此时这种情况得到的二叉树个数便转换成了求左边情况的个数*右边情况的个数(组合数学)
 * [当然如果左边或者右边有一方为0的话,就返回一支子树的数量就行了]
 * 
 * 而当i = 4的时候,左子树结点Number: i-1=3 ,右子树结点Number: n-i=4-4=0
 * 此时这种情况得到的二叉树个数便转换成了求左边3个结点拥有的情况数量(递归)
 * 
 * 最终所有情况加起来就是 n = 4的所有二叉树数目


AC代码:

package copylist;

/**
 * 
 * @Description:  [leetcode Unique Binary Search Trees]
 * @Author:       [胖虎]   
 * @CreateDate:   [2014-4-3 下午8:19:44]
 * @CsdnUrl:      [http://blog.csdn.net/ljphhj]
 */
public class Solution {
    public int numTrees(int n) {
        
        if (n == 0 || n == 1)
            return n;
            
        return calSum(n);
    }
    public int calSum(int n){
        int sum = 0;
        if (n == 1)
            return 1;
        if (n == 2)
            return 2;
        if (n == 3)
            return 5;
        /*求出所有root.val = i的情况,然后相加就是n的二叉树的所有情况*/
        for (int i=1; i<=n; ++i){
            sum += deal(i-1,n-i);
        }
        return sum;
    }
    /*
     * 计算左右子树的情况数,并求出整体的情况数
     * 
     * */
    public int deal(int leftnumber, int rightnumber){
        int sumleft = 0;
        int sumright = 0;
        
        int sum = 0;
        if (leftnumber == 1 || leftnumber == 0)
        	sumleft += leftnumber;
        else{
        	sumleft += calSum(leftnumber);
        }
        if (rightnumber == 1 || rightnumber == 0)
        	sumright += rightnumber;
        else{
        	sumright += calSum(rightnumber);
        }
        /*如果有一个子树上没有节点,则返回另一个子树的数量即可*/
        if (sumleft == 0)
        	return sumright;
        if (sumright == 0)
        	return sumleft;
        
        sum = sumleft * sumright;	//组合数学:总数等于左右子树的情况数的乘积
        
        return sum;
    }
    
    public static void main(String[] args) {
    	Solution s = new Solution();
		System.out.println(s.numTrees(1));
		System.out.println(s.numTrees(2));
		System.out.println(s.numTrees(3));
		System.out.println(s.numTrees(4));
		System.out.println(s.numTrees(5));
	}
}

题目四:

N-Queens && N-Queens II

这两个题目是类似的:都是N皇后问题,我之前有一篇文章写的就是总结递归问题和分治思想的,那里面对N皇后问题进行了很详细的解说,所以这里就不重复了。
博文链接:本文专注于<递归算法和分治思想>[胖虎学习算法系列]http://blog.csdn.net/ljphhj/article/details/22799189
 

我们来看下这两题的题目和AC代码:

题目1(N-queens):

The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.

Given an integer n, return all distinct solutions to the n-queens puzzle.

Each solution contains a distinct board configuration of the n-queens' placement, where 'Q' and '.' both indicate a queen and an empty space respectively.

For example,
There exist two distinct solutions to the 4-queens puzzle:

[
 [".Q..",  // Solution 1
  "...Q",
  "Q...",
  "..Q."],

 ["..Q.",  // Solution 2
  "Q...",
  "...Q",
  ".Q.."]
]

AC代码:

package copylist;

import java.util.ArrayList;
import java.util.Arrays;

/**
 * 典型的N皇后问题
 * @Description:  [leetcode N-Queens]
 * @Author:       [胖虎]   
 * @CreateDate:   [2014-4-3 下午8:19:44]
 * @CsdnUrl:      [http://blog.csdn.net/ljphhj]
 */
public class Solution {
	private ArrayList<String[]> result = new ArrayList<String[]>();
    private int[][] conflicts;
    private int[] queens;	//int[row] = col
	private int count = 0;
	private int n;
	
	public ArrayList<String[]> solveNQueens(int n) {
		if(n == 0)
			return result;
		//init
		conflicts = new int[n][n];
		queens = new int[n];
		this.n = n;
		solve(0);
		return result;
    }
	
    public void solve(int row){
    	
    	for (int col=0; col<n; ++col){
    		if (conflicts[row][col] == 0){
    			queens[row] = col;
    			//add conflict
    			for (int i=row+1; i<n; ++i){
    				//"|"
    				conflicts[i][col]++;
    				//"\"
    				if ((col - (i - row)) >= 0){
    					conflicts[i][(col - (i - row))]++;
    				}
    				//"/"
    				if ((col + (i - row)) < n){
    					conflicts[i][(col + (i - row))]++;
    				}
    			}
    			
    			if (row == n-1){
    				String[] strings = new String[n];
    				for(int i=0; i<n; ++i){
    					strings[i] = "";
    					for (int j=0; j<n; ++j){
    						if (j == queens[i]){
    							strings[i] += "Q";
    						}else{
    							strings[i] += ".";
    						}
    					}
    				}
    				result.add(strings);
    			}else{
    				solve(row+1);
    			}
    			
    			//remove conflict
    			for (int i=row+1; i<n; ++i){
    				//"|"
    				conflicts[i][col]--;
    				//"\"
    				if ((col - (i - row)) >= 0){
    					conflicts[i][(col - (i - row))]--;
    				}
    				//"/"
    				if ((col + (i - row)) < n){
    					conflicts[i][(col + (i - row))]--;
    				}
    			}
    		}
    	}
    	
    }
    
    
    public static void main(String[] args) {
    	Solution s = new Solution();
    	ArrayList<String[]> list = s.solveNQueens(8);
    	int i=0;
    	for (String[] string : list) {
    		System.out.println("解法" + ++i + ":");
			for (String string2 : string) {
				System.out.println(string2);
			}
		}
	}
}

题目2(N -queens II ):

Follow up for N-Queens problem.

Now, instead outputting board configurations, return the total number of distinct solutions.


就是题目1的答案哈,只不过它要返回的值是所有解的个数,我们都能得到所有解,还怕得不到个数么?

AC代码:

public class Solution {
    private int[][] conflicts;
	private int count = 0;
	private int n;
	
	public void solveNQueens(int n) {
		if(n == 0)
			return;
		//init
		conflicts = new int[n][n];
		this.n = n;
		solve(0);
    }
	
    public void solve(int row){
    	
    	for (int col=0; col<n; ++col){
    		if (conflicts[row][col] == 0){
    			//add conflict
    			for (int i=row+1; i<n; ++i){
    				//"|"
    				conflicts[i][col]++;
    				//"\"
    				if ((col - (i - row)) >= 0){
    					conflicts[i][(col - (i - row))]++;
    				}
    				//"/"
    				if ((col + (i - row)) < n){
    					conflicts[i][(col + (i - row))]++;
    				}
    			}
    			
    			if (row == n-1){
    				count++;
    			}else{
    				solve(row+1);
    			}
    			
    			//remove conflict
    			for (int i=row+1; i<n; ++i){
    				//"|"
    				conflicts[i][col]--;
    				//"\"
    				if ((col - (i - row)) >= 0){
    					conflicts[i][(col - (i - row))]--;
    				}
    				//"/"
    				if ((col + (i - row)) < n){
    					conflicts[i][(col + (i - row))]--;
    				}
    			}
    		}
    	}
    	
    }
    public int totalNQueens(int n) {
        solveNQueens(n);
        return count;
    }
}


题目五:

Pow(x, n)

 题目:Implement pow(xn).

分析:要我们实现一个pow这样的函数,哈哈,用JAVA用惯了,突然要你实现api里面的其中一个函数,是不是觉得很无语哈,不过这题明显是有陷阱的

如果你用for循环,去做n次 x 的乘法运算,那肯定是会超时的,那如何算会比较快呢?

我们想到初高中的数学公式

1、X^n = (X^2) ^ (n/2) [当n是偶数的时候]

2、X^n = X * (X^2) ^ ((n-1)/2) [当n是奇数的时候]

这样子我们就可以把这个问题转换成 递归或者分治思想这样的题目啦!

很奇妙吧!看AC代码哈~~


package copylist;
/**
 * 
 * @Description:  [pow(x,n)的java实现代码]
 * @Author:       [胖虎]   
 * @CreateDate:   [2014-4-3 下午10:24:57]
 * @CsdnUrl:      [http://blog.csdn.net/ljphhj]
 */
public class Solution {
    public double pow(double x, int n) {
    	//如果n<0 那么结果是等于 x^n的倒数,即 1/x^n
    	//为了方便运算,我们先把n统一成正数
        int y = n > 0 ? n : -n;
        if (n == 0){
        	// x^0 = 1;
        	return 1;
        }
        if (n == 1){
        	// x^1 = x;
        	return x;
        }
        double result;
        if (y % 2 == 0){
        	result = pow(x*x, y / 2);
        }else{
        	result = pow(x*x, (y-1) / 2) * x;
        }
        return n > 0 ? result : 1.0 / result;
    }
    
    public static void main(String[] args) {
    	System.out.println(new Solution().pow(34.00515, -3));
	}
}



你可能感兴趣的:(leetCode解题报告5道题(二))