题目一:
Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all the values along the path equals the given sum.
For example:sum = 22
,
5 / \ 4 8 / / \ 11 13 4 / \ \ 7 2 1
return true, as there exist a root-to-leaf path 5->4->11->2
which sum is 22.
AC代码:
/** * Definition for binary tree * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ public class Solution { public boolean hasPathSum(TreeNode root, int sum) { /*如果root == null直接返回false*/ if (root == null){ return false; } /*sum 减去当前root的值*/ sum -= root.val; /*如果已经到了叶子结点,判断sum是否已经减到了0*/ if (root.left == null && root.right == null && sum == 0){ return true; } /*flag的话,要判断左右子树是否有路径可以满足,即为 */ boolean flag = hasPathSum(root.left, sum) || hasPathSum(root.right, sum); return flag; } }
Given a binary tree and a sum, find all root-to-leaf paths where each path's sum equals the given sum.
For example:sum = 22
,
5 / \ 4 8 / / \ 11 13 4 / \ / \ 7 2 5 1
return
[ [5,4,11,2], [5,8,4,5] ]
分析:无情递归就OK了,递归结束的条件:当是叶子结点并且sum的值已经变成了0,这时候的List为一组有效的解,加入到结果集合result中。
/** * Definition for binary tree * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ /** * CSDN: 胖虎 http://blog.csdn.net/ljphhj */ public class Solution { private ArrayList<ArrayList<Integer>> result = new ArrayList<ArrayList<Integer>>(); public ArrayList<ArrayList<Integer>> pathSum(TreeNode root, int sum) { if (root == null){ return result; } calPath(root, sum, new ArrayList<Integer>()); return result; } public void calPath(TreeNode root, int sum, ArrayList<Integer> list){ sum -= root.val; list.add(root.val); //当前值加入“可能的解”集合list中 /*如果为叶子结点了,那么就判断是否sum已经等于0了,如果等于0则为一个有效解*/ if (root.left == null && root.right == null && sum == 0){ result.add(list); return ; } /*如果不是叶子结点,则继续往左右子树找*/ if (root.left != null){ calPath(root.left, sum, new ArrayList<Integer>(list)); } if (root.right != null){ calPath(root.right, sum, new ArrayList<Integer>(list)); } } }
题目二:
Given two sorted integer arrays A and B, merge B into A as one sorted array.
Note:
You may assume that A has enough space (size that is greater or equal to m + n) to hold additional elements from B. The number of elements initialized in A and B are m andn respectively.
AC代码:
public class Solution { public void merge(int A[], int m, int B[], int n) { if (m == 0){ for (int i=0; i<n; ++i){ A[i] = B[i]; } return ; } if (n == 0){ return ; } int pA = m-1; int pB = n-1; int pIndex = m+n-1; /*从尾向前添加数字*/ while (pA >= 0 && pB >= 0){ if (B[pB] > A[pA]){ A[pIndex--] = B[pB--]; }else{ A[pIndex--] = A[pA--]; } } /*pA>=0不处理,因为本来就在A数组中*/ /*如果循环结束了,pB>=0则表示B数组还有值没加入到A数组中*/ while (pB >= 0){ A[pIndex--] = B[pB--]; } } }
题目三:
Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center).
For example, this binary tree is symmetric:
1 / \ 2 2 / \ / \ 3 4 4 3
But the following is not:
1 / \ 2 2 \ \ 3 3
分析:题目给我们一个二叉树的结构,让我们去判断这个二叉树是否是对称的。这道题目可以有两种做法,递归(424ms)或者用层次遍历树(524ms)的方法
这个题目的递归很容易就看出来了,我就不详细讲,具体看代码里面的注释理解!
(递归)AC代码(424ms):
/** * Definition for binary tree * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ public class Solution { /*判断左右子树是否对称*/ public boolean checkSymmetric(TreeNode lsubTree,TreeNode rsubTree){ /*几种基本情况的排除*/ if(lsubTree==null && rsubTree==null) return true; else if(lsubTree!=null && rsubTree==null) return false; else if(lsubTree==null && rsubTree!=null) return false; else if(lsubTree.val != rsubTree.val) return false; /*再递归看下子树是否对称,只有子树也对称了才可以*/ boolean lt=checkSymmetric(lsubTree.left, rsubTree.right); boolean rt=checkSymmetric(lsubTree.right, rsubTree.left); return lt && rt; } /*只要左右子树对称那么整个二叉树就对称了*/ public boolean isSymmetric(TreeNode root) { if(root==null) return true; return checkSymmetric(root.left,root.right); } }
(层次遍历)AC代码(524ms):
/** * Definition for binary tree * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ public class Solution { public boolean isSymmetric(TreeNode root) { Queue<TreeNode> queue = new LinkedList<TreeNode>(); if (root == null) return true; /*加入根结点的左右子结点*/ queue.add(root.left); queue.add(root.right); /*层次遍历*/ while (queue.size() != 0){ String s = new String(""); ArrayList<TreeNode> list = new ArrayList<TreeNode>(); /*把一层的结点都取出来之后放入list集合*/ while (queue.size() != 0){ TreeNode node = queue.remove(); list.add(node); } /*把这一层的结点对应的值转换成字符串*/ for (int i=0;i<list.size(); ++i){ TreeNode node = (TreeNode)list.get(i); if (!s.equals("")){ s += " "; } if (node != null) s += node.val; else s += "Null"; if (node != null){ queue.add(node.left); queue.add(node.right); } } /*判断这一层的结点转换成的字符串是否满足条件,不满足直接return*/ if (!isManZu(s)) return false; } return true; } /*检测字符串是否满足条件*/ public boolean isManZu(String s){ String[] arrays = s.trim().split(" "); int len = arrays.length; if (len % 2 == 1) return false; for(int i=0; i<len/2; ++i){ if (!arrays[i].equals(arrays[len-1-i])) return false; } return true; } }
题目四:
Given a binary tree, flatten it to a linked list in-place.
For example,
Given
1 / \ 2 5 / \ \ 3 4 6
The flattened tree should look like:
1 \ 2 \ 3 \ 4 \ 5 \ 6
分析:仔细观察题目给出的例子,不难发现其实这个可以用递归来做,求root结点的flatten tree相当于先求出左子树,再求出右子树,然后将左子树的最后一个结点连接到右子树的第一个结点,将root的右子树连接到左子树的第一个结点上,总而言之这题还是比较简单的,建议做这题的时候可以在纸上画一下图,帮助理解!
情况:
1、root只有左子树
2、root只有右子树
3、root左右子树都有
AC代码:
/** * Definition for binary tree * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ public class Solution { public void flatten(TreeNode root) { transform(root); return ; } public TreeNode transform(TreeNode root){ if (root == null) return null; if (root.left == null && root.right == null) return root; TreeNode leftChild = null; TreeNode rightChild = null; if (root.left != null){ leftChild = transform(root.left); } if (root.right != null){ rightChild = transform(root.right); } if (leftChild != null){ leftChild.right = root.right; root.right = root.left; root.left = null; } if (rightChild != null) return rightChild; if (leftChild != null) return leftChild; return root; } }
题目五:
Given a string S and a string T, count the number of distinct subsequences of T in S.
A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ACE"
is a subsequence of "ABCDE"
while "AEC"
is not).
Here is an example:
S = "rabbbit"
, T = "rabbit"
Return 3
.
题意:求出字符串T在字符串S中出现的次数,
S字符串:
0 1 2 3 4 5 6
r a b b b i t
T字符串:
0 1 2 3 4 5
r a b b i t
出现的最大次数是3,三种情况分别为:
S: 0 1 2 3 5 6
S: 0 1 2 4 5 6
S: 0 1 3 4 5 6
这样子,我们很容易知道这其实是一个DP的问题
对应的状态转移方程式
if(S[i] == T[j]) dp[i][j] = dp[i-1][j-1] + dp[i-1][j]; else dp[i][j] = dp[i-1][j];
AC代码:
public class Solution { public int numDistinct(String S, String T) { int n = S.length(); int m = T.length(); if (m > n) return 0; int[][] results = new int[n+1][m+1]; for (int i=0; i<n+1; ++i){ results[i][0] = 0; } for (int i=0; i<m+1; ++i){ results[0][i] = 0; } for (int i=1; i<n+1; ++i){ for (int j=1; j<m+1; ++j){ results[i][j] = results[i-1][j]; if (S.charAt(i-1) == T.charAt(j-1)){ if (j == 1) results[i][j] += 1;//j == 1的话表示第一个字符,直接加1 else results[i][j] += results[i-1][j-1]; } } } return results[n][m]; } }