ServerSocketChannel 及 SocketChannel 都是 SelectableChannel 的子类, 如图 4-3 所示. SelectableChannel 类及其子类都能委托 Selector 来监控他们可能发生的一些事件, 这种委托过程也称为注册事件过程.
图4-3 SelectableChannel 类及其子类的类框图
ServerSocketChannel 向 Selector 注册接收连接就绪事件的代码如下:
SelectionKey key = serverSocketChannel.register(selector, SelectionKey.OP_ACCEPT);
SelectionKey 类的一些静态常量表示事件类型, ServerSocketChannel 只可能发生一种事件.
SocketChannel 可能发生以下 3 种事件.
SocketChannel 提供了接收和发送数据的方法.
ByteBuffer 表示字节缓冲区, SocketChannel 的 read() 和 write() 方法都会操纵 ByteBuffer. ByteBuffer 类继承于 Buffer 类. ByteBuffer 中存放的是字节, 为了把它们转换为字符串, 还需要用到 Charset 类, Charset 类代表字符编码, 它提供了把字节流转换为字符串(解码过程) 和把字符串转换为字节流(编码过程) 的实用方法。
数据输入和输出往往是比较耗时的操作. 缓冲区从两个方面提高 I/O 操作的效率:
旧I/O 类库(对应 java.nio包) 中的 BufferedInputStream, BufferedOutputStream, BufferedReader 和 BufferedWriter 在其实现中都运用了缓冲区. java.nio 包公开了 Buffer API, 使得Java 程序可以直接控制和运用缓冲区. 如图 4-4 所示, 显示了 Buffer 类的层次结构.
图 4-4 Buffer 类的层次结构
所有的缓冲区都有以下属性:
如图 4-5 所示, 以上 3 个属性的关系为: 容量 ≥ 极限 ≥ 位置 ≥ 0
图 4-5 缓冲区的 3 个属性
缓冲区提供了用于改变以上 3 个属性的方法.
Buffer 类的remaining() 方法返回缓冲区的剩余容量, 取值等于极限-位置. Buffer 类的 compact() 方法删除缓冲区内从 0 到当前位置position 的内容, 然后把从当前位置position 到极限limit 的内容复制到 0 到 limit-position 的区域内, 当前位置position 和极限limit 的取值也作相应的变化, 如图 4-6 所示.
图4-6 Buffer 类的 compact() 的作用
java.nio.Buffer 类是一个抽象类, 不能被实例化. 共有 8 个具体的缓冲区类, 其中最基本的缓冲区是 ByteBuffer, 它存放的数据单元是字节. ByteBuffer 类并没有提供公开的构造方法, 但是提供了两个获得 ByteBuffer 实例的静态工厂方法.
除 boolean 类型以外, 每种基本类型都有对应的缓冲区类, 包括 CharBuffer, DoubleBuffer, FloatBuffer, IntBuffer, LongBuffer 和 ShortBuffer. 这几个缓冲区类都有一个能够返回自身实例的静态工厂方法allocate(int capacity). 在 CharBuffer 中存放的数据单元为字符, 在 DoubleBuffer 中存放的数据单元为 double 数据, 依此类推. 还有一个缓冲区是 MappedByteBuffer, 它是 ByteBuffer 的子类. MappedByteBuffer 能够把缓冲区和文件的某个区域直接映射.
所有具有缓冲区类都提供了读写缓冲区的方法:
java.nio.Channel 类的每个实例代表特定的字符编码类型. 如图 4-7 所示, 把字节序列转换为字符串的过程称为解码; 把字符串转换为字节序列的过程称为编码.
图 4-7 编码与解码
Charset 类提供了编码与解码的方法:
Charset 类的静态 forName(String encode) 方法返回一个 Charset 对象, 它代表参数 encode 指定的编码类型. 例如, 以下代码创建了一个代表"GBK" 编码的 Charset对象:
Charset charset = Charset.forName("GBK");
Charset 类还有一个静态方法 defaultCharset(), 它返回代表本地平台的默认字符编码的 Charset 对象.
通道 Channel 用来连接缓冲区与数据源或数据汇(数据目的地). 如图4-8 所示, 数据源的数据经过管道到达缓冲区, 缓冲区的数据经过通道到达数据汇.
图4-8 通道的作用
如图 4-9 所示, 显示了 Channel 的主要层次结构.
图4-9 Channel 的主要层次结构
java.nio.channels.Channel 接口只声明了两个方法.
通道在创建时被打开, 一旦关闭通道, 就不能重新打开了.
Channel 接口的两个最重要的子接口是 ReadableByteChannel 和 WritableByteChannel. ReadableByteChannel 接口声明了 read(ByteBuffer dst) 方法, 该方法把数据源的数据读入参数指定的 ByteBuffer 缓冲区中; WritableByteChannel 接口声明了 write(ByteBuffer src)方法, 该方法把参数指定的 ByteBuffer 缓冲区中的数据写到数据汇中. 如图4-10 所示, 显示了 Channel 与 Buffer 的关系. ByteChannel 接口是一个便利接口, 它扩展了 ReadByteChannel 和 WritableByteChannel 接口, 因而同时支持读写操作.
图4-10 Channel 与 Buffer 的关系
ScatteringByteChannel 接口扩展了 ReadByteChannel 接口, 允许分散地读取数据. 分散读取数据是指单个读取操作能填充多个缓冲区. ScatteringByteChannel 接口声明了 read(ByteBuffer[] dsts)方法, 该方法把从数据源读取的数据依次填充到参数指定的 ByteBuffer 数组的各个 ByteBuffer 中. GatheringByteChannel 接口扩展了 WritableByteChannel 接口, 允许集中地写入数据. 集中写入数据是指单个写操作能把多个缓冲区的数据写入数据汇. GatheringByteChannel 接口声明了 write(ByteBuffer[] srcs)方法, 该方法依次把参数指定的 ByteBuffer 数组的每个 ByteBuffer 中的数据写入数据汇. 分散读取和集中写数据能够进一步提高输入和输出操作的速度.
FileChannel 类是 Channel 接口的实现类, 代表一个与文件相连的通道. 该类实现了 ByteChannel, ScatteringByteChannel, GatheringByteChannel 接口, 支持读操作, 写操作, 分散读操作和集中写操作. FileChannel 类没有提供公开的构造方法, 一次客户程序不能用 new 语句来构造它的实现. 不过, 在 FileInputStream, FileOutputStream 和 RandomAccessFile 类中提供了 getChannel() 方法, 该方法返回对应的 FileChannel 对象.
SelectableChannel 也是一种通道, 它不仅支持阻塞的 I/O 操作, 还支持非阻塞的 I/O 操作. SelectableChannel 有两个子类: ServerSocketChannel 和 SocketChannel. SocketChannel 还实现了 ByteChannel 接口, 具有 read(ByteBuffer dst) 和 write(ByteBuffer src) 方法.
注意上面的图4-9 Channel 的主要层次结构, 这个跟原书有点区别, 里面的类都是 jdk1.5的, 其中 SocketChannel 是实现了 ByteChannel, ScatteringByteChannel, GatheringByteChannel 接口, SocketChannel 还有一个子类SocketChannelImpl, SocketChannelImpl 的源代码看不到呢.
SelectableChannel 类是一种支持阻塞 I/O 和非阻塞 I/O 的通道. 在非阻塞模式下, 读写数据不会阻塞, 并且SelectableChannel 可以向 Selector 注册读就绪和写就绪等事件. Selector 负责监控这些事件, 等到事件发生时, 比如发生了读就绪事件, SelectableChannel 就可以执行读操作了.
SelectableChannel 的主要方法如下:
数block 为true 时, 表示把 SelectableChannel 设为阻塞模式; 如果参数block 为false, 表示把 SelectableChannel 设为非阻塞模式. 默认情况下, SelectableChannel 采用阻塞模式. 该方法返回 SelectableChannel 对象本身的引用, 相当于" return this".
后两个方法都向 Selector 注册时间, 如以下 socketChannel( SelectableChannel 的一个子类) 向 Selector 注册读就绪和写就绪事件:
SelectionKey key = socketChannel.register(selector, SelectionKey.OP_READ | SelectionKey.OP_WRITE);
register() 方法返回一个 SelectionKey 对象, SelectionKey 用来跟踪被注册的事件. 第二个register() 方法还有一个Object 类型的参数 attachment, 它用于为 SelectionKey 关联一个附件, 当被注册事件发生后, 需要处理该事件时, 可以从 SelectionKey 中获得这个附件, 该附件可用来包含与处理这个事件相关的信息. 以下这两段代码是等价的:
MyHandler handler = new MyHandler(); //负责处理事件的对象
SelectionKey key = socketChannel.register(selector, SelectioinKey.OP_READ | SelectionKey.OP_WRITE,handler );
等价于:
MyHandler handler = new MyHandler(); //负责处理事件的对象
SelectionKey key = socketChannel.register(selector, SelectioinKey.OP_READ | SelectionKey.OP_WRITE);
key.attach(handler ); //为SelectionKey 关联一个附件
SeverSocketChannel 从 SeletableChannel 中继承了 configureBlocking() 和 register()方法. ServerSocketChannel 是 ServerSocket 的替换类, 也具有负责接收客户连接的 accept() 方法. ServerSocket 并没有 public 类型的构造方法, 必须通过它的静态方法open() 来创建 ServerSocketChannel 对象. 每个ServerSocketChannel 对象都与一个ServerSocket 对象关联. ServerSocketChannel 的 socket() 方法返回与它关联的 ServerSocket 对象. 可通过以下方法把服务器进程绑定到一个本地端口:
serverSocketChannel.socket().bind(port);
ServerSocketChannel 的主要方法如下:
这是 ServerSocketChannel 类的静态工厂方法, 它返回一个 ServerSocketChannel 对象, 这个对象没有与任何本地端口绑定, 并且处于阻塞模式.
类似于 ServerSocket 的accept() 方法, 用于接收客户的连接. 如果 ServerSocketChannel 处于非阻塞状态, 当没有客户连接时, 该方法立即返回 null; 如果ServerSocketChannel 处于阻塞状态, 当没有客户连接时, 它会一直阻塞下去, 直到有客户连接就绪, 或者出现了IOException.
值得注意的是, 该方法返回的 SocketChannel 对象处于阻塞模式, 如果希望把它改为非阻塞模式, 必须执行以下代码:
socketChannel.configureBlocking(false);
返回 ServerSocketChannel 所能产生的事件, 这个方法总是返回 SelectionKey.OP_ACCEPT.
返回与 ServerSocketChannel 关联的 ServerSocket 对象. 每个 ServerSocketChannel 对象都与一个 ServerSocket 对象关联.
SocketChannel 可看作是 Socket 的替代类, 但它比 Socket 具有更多的功能. SocketChannel 不仅从 SelectableChannel 父类中继承了 configureBlocking() 和 register() 方法, 并且实现了 ByteChannel 接口, 因此具有用于读写数据的 read(ByteBuffer dst) 和 write(ByteBuffer src) 方法. SocketChannel 没有public 类型的构造方法, 必须通过它的静态方法open() 来创建 SocketChannel 对象.
SocketChannel 的主要方法如下:
SocketChannel 的静态工厂方法open() 负责创建 SocketChannel 对象, 第二个带参数的构造方法还会建立与远程服务器的连接. 在阻塞模式下及非阻塞模式下, 第二个open() 方法有不同的行为, 这与 SocketChannel 类的 connect() 方法类似, 可参见本届 connect() 方法的介绍.
以下两段代码是等价的:
SocketChannel socketChannel = SocketChannel.open();
socketChannel.connect(remote); //remote 为 SocketAddress 类型
等价于:
SocketChannel socketChannel = SocketChannel.open(remote); //remote 为 SocketAddress 类型
值得注意的是, open() 方法返回的SocketChannel 对象处于阻塞模式, 如果希望把它改为非阻塞模式, 必须执行以下代码:
socketChannel.configureBlock(false);
返回SocketChannel 所能产生的事件, 这个方法总是返回以下值:
SelectionKey.OP_CONNECT | SelectionKey.OP_READ | SelectionKey.OP_WRITEN
返回与这个SocketChannel 关联的 Socket 对象. 每个 SocketChannel 对象都与一个 Socket 对象关联.
判断底层 Socket 是否已经建立了远程连接.
判断是否正在进行远程连接. 当远程连接操作已经开始, 但是还没有完成时, 则返回true, 否则返回false. 也就是说, 当底层Socket 还没有开始连接, 或者已经连接成功时, 该方法都会返回false.
使底层Socket 建立远程连接. 当SocketChannel 处于非阻塞模式时, 如果立即连接成功, 该方法返回true, 如果不能立即连接成功, 该方法返回false, 程序过会儿必须通过调用finishConnect() 方法来完成连接. 当SocketChannel 处于阻塞模式, 如果立即连接成功, 该方法返回true, 如果不能立即连接成功, 将进入阻塞状态, 直到连接成功, 或者出现 I/O 异常.
试图完成连接远程服务器的操作. 在非阻塞模式下, 建立连接从调用SocketChannel 的connect() 方法开始, 到调用 finishConnect() 方法结束. 如果finishConnect() 方法顺利完成连接, 或者在调用次方法之前连接已经建立, 则finishConnect() 方法立即返回true. 如果连接操作还没有完成, 则立即返回false; 如果连接操作中遇到异常而失败, 则抛出响应的I/O 异常.
在阻塞模式下, 如果连接操作还没有完成, 则会进入阻塞状态, 直到连接完成或者出现I/O 异常.
从 Channel 中读入若干字节, 把他们存放到参数指定的 ByteBuffer 中. 假定执行read() 方法前, ByteBuffer 的位置为p, 剩余容量为r, r 等于dst.remaining() 方法的返回值. 假定read() 方法实际读入了 n 个字节, 那么 0 ≤ n ≤ r. read() 方法返回后, 参数 dst 引用的ByteBuffer 的位置变为 p+n, 极限保持不变, 如图4-11 所示:
图4-11 read() 方法读入 n 个字节
在阻塞模式下, read() 方法会争取读到 r 个字节, 如果输入流中不足 r 个字节, 就进入阻塞状态, 直到读入了 r 个字节, 或者读到了输入流末尾, 或者出现了 I/O 异常.
在非阻塞模式下, read() 方法奉行能读到多少数据就读多少数据的原则. read() 方法读取当前通道中的可读数据, 有可能不足 r 个资金额, 或者为 0 个字节, read() 方法总是立即返回, 而不会等到读取了 r 个字节在返回.
read() 方法返回的实际上读入的字节数, 有可能为 0. 如果返回 -1, 就表示读到了输入流的末尾.
把参数 src 指定的 ByteBuffer 中的字节写到 Channel 中. 假定执行 write() 方法前, ByteBuffer 的位置为 p, 剩余容量为 r, r 等于 src.remaining() 方法的返回值. 假定 write() 方法实际上向通道中写了 n 个字节, 那么 0 ≤ n ≤ r. write() 方法返回后, 参数 src 引用的 ByteBuffer 的位置变为 p+n, 极限保持不变, 如图4-12 所示:
图4-12 write() 方法输出 n 个字节
在阻塞模式下, write() 方法会争取输出 r 个字节, 如果底层网络的输出缓冲区不能容纳 r 个字节, 就进入阻塞状态, 直到输出了 r 个字节, 或者出现了 I/O 异常.
在非阻塞模式下, write() 方法奉行能输出多少数据就输出多少数据的原则, 有可能不足 r 个字节, 或者为 0 个字节, write() 方法总是立即返回, 而不会等到输出 r 个字节后再返回.
write() 方法返回实际上输出的字节数, 有可能为 0.
只要 ServerSocketChannel 及 SocketChannel 向 Selector 注册了特定的事件, Selector 就会监控这些事件是否发生. SelectableChannel 的 register() 方法负责注册事件, 该方法返回一个SelectionKey 对象, 该对象是用于跟踪这些被注册事件的句柄. 一个Selector 对象中会包含 3 种类型的 SelectionKey 集合.
以上第二种和第三种集合都是第一种集合的子集. 对于一个新建的Selector 对象, 它的上述集合都为空.
当执行SelectableChannel 的 register() 方法时, 该方法新建一个 SelectionKey, 并把它加入到 Selector 的all-keys 集合中.
如果关闭了与SelectionKey 对象关联的 Channel 对象, 或者调用了 SelectionKey 对象的cancel() 方法, 这个 SelectionKey 对象就会被加入到 cancelled-keys 集合中, 表示这个 SelectionKey 对象已经被取消, 在程序下一次执行 Selector 的 select() 方法时, 被取消的 SelectionKey 对象将从所有的集合(包括 all-keys 集合, selected-keys集合和cancelled-keys 集合)中删除.
在执行 Selector 的 select() 方法时, 如果与 SelectionKey 相关的事件发生了, 这个SelectionKey 就被加入到 selected-keys 集合中. 程序直接调用 selected-keys 集合的 remove() 方法, 或者调用它的 Iterator 的 remove() 方法, 都可以从 selected-keys 集合中删除一个 SelectionKey 对象.
程序不允许直接通过集合接口的 remove() 方法删除 all-keys 集合中的 SelectionKey 对象. 如果程序试图这样做, 那么会导致 UnsupportedOperationException. (all-keys 应该是一个内部类, 并且不实现remove()的方法, 继承的对象也是没实现这些方法的; 还有可能是new HashSet(){重写remove()方法,直接抛出异常},如: private static HashSet keys = new HashSet(){
public boolean remove(Object o){
throw new UnsupportedOperationException();
}
};)
Selector 类的主要方法如下:
这是 Selector 的静态工厂方法, 创建一个 Selector 对象.
判断 Selector 是否处于打开状态. Selector 对象创建后就处于打开状态, 当调用那个了 Selector 对象的 close() 方法, 它就进入关闭状态.
返回 Selector 的 all-keys 集合, 它包含了所有与 Selector 关联的 SelectionKey 对象.
返回相关事件已经发生的 SelectionKey 对象的数目. 该方法采用非阻塞的工作方式, 返回当前相关时间已经发生的 SelectionKey 对象的数目, 如果没有, 就立即返回 0 .
该方法采用阻塞的工作方式, 返回相关事件已经发生的 SelectionKey 对象的数目, 如果一个也没有, 就进入阻塞状态, 直到出现以下情况之一, 才从 select() 方法中返回.
>至少有一个 SelectionKey 的相关事件已经发生;
>其他线程调用了 Selector 的 wakeup() 方法, 导致执行 select() 方法的线程立即从 select() 方法中返回.
>当前执行 select() 方法的线程被其他线程中断.
>超出了等待时间. 该时间由 select(long timeout) 方法的参数 timeout 设定, 单位为毫秒. 如果等待超时, 就会正常返回, 但不会抛出超时异常. 如果程序调用的是不带参数的 select() 方法, 那么永远不会超时, 这意味着执行 select) 方法的线程进入阻塞状态后, 永远不会因为超时而中断.
呼醒执行 Selector 的 select() 方法(也同样设用于 select(long timeout) 方法) 的线程. 当线程A 执行 Selector 对象的 wakeup() 方法时, 如果线程B 正在执行同一个 Selector 对象的 select() 方法, 或者线程B 过一会儿会执行这个 Selector 对象的 select() 方法, 那么线程B 在执行 select() 方法时, 会立即从 select() 方法中返回, 而不会阻塞. 假如, 线程B 已经在 select() 方法中阻塞了, 也会立即被呼醒, 从select() 方法中返回.
wakeup() 方法只能呼醒执行select() 方法的线程B 一次. 如果线程B 在执行 select() 方法时被呼醒后, 以后在执行 select() 方法, 则仍旧按照阻塞方式工作, 除非线程A 再次调用 Selector 对象的 wakeup() 方法.
关闭 Selector. 如果有其他线程正执行这个Selector 的select() 方法并且处于阻塞状态, 那么这个线程会立即返回. close() 方法使得 Selector 占用的所有资源都被释放, 所有与 Selector 关联的 SelectionKey 都被取消.
ServerSocketChannel 或 SocketChannel 通过 register() 方法向 Selector 注册事件时, register() 方法会创建一个 SelectionKey 对象, 这个 SelectionKey 对象是用来跟踪注册事件的句柄. 在 SelectionKey 对象的有效期间, Selector 会一直监控与 SelectionKey 对象相关的事件, 如果事件发生, 就会把 SelectionKey 对象加入到 selected-keys 集合中. 在以下情况下, SelectionKey 对象会失效, 这意味着 Selector 再也不会监控与它相关的事件了:
⑴ 程序调用 SelectionKey 的 cancel() 方法;
⑵ 关闭与 SelectionKey 关联的 Channel;
⑶ 与 SelectionKey 关联的 Selector 被关闭.
在 SelectionKey 中定义了 4 种事件, 分别用 4 个 int 类型的常量来表示.
以上常量分别占据不同的二进制位, 因此可以通过二进制的或运算 "|", 来将它们进行任意组合. 一个 SelectionKey 对象中包含两种类型的事件.
SelectionKey key = socketChannel.register(selector, SelectionKey.OP_CONNECT | SelectionKey.OP_READ );
SelectionKey 的 interestOps(int ops) 方法用于为 SelectionKey 对象增加一个感兴趣的事件. 假如, 以下代码使得 SelectionKey 增加了一个感兴趣的事件:
key.interestOps( SelectionKey.OP_WRITE );