目前计算机程序一般会遇到两类I/O:硬盘I/O和网络I/O。我就针对网络I/O的场景分析下python3下进程、线程、协程效率的对比。进程采用multiprocessing.Pool进程池,线程是自己封装的进程池,协程采用gevent的库。用python3自带的urlllib.request和开源的requests做对比。代码如下:
import urllib.request import requests import time import multiprocessing import threading import queue def startTimer(): return time.time() def ticT(startTime): useTime = time.time() - startTime return round(useTime, 3) #def tic(startTime, name): # useTime = time.time() - startTime # print('[%s] use time: %1.3f' % (name, useTime)) def download_urllib(url): req = urllib.request.Request(url, headers={'user-agent': 'Mozilla/5.0'}) res = urllib.request.urlopen(req) data = res.read() try: data = data.decode('gbk') except UnicodeDecodeError: data = data.decode('utf8', 'ignore') return res.status, data def download_requests(url): req = requests.get(url, headers={'user-agent': 'Mozilla/5.0'}) return req.status_code, req.text class threadPoolManager: def __init__(self,urls, workNum=10000,threadNum=20): self.workQueue=queue.Queue() self.threadPool=[] self.__initWorkQueue(urls) self.__initThreadPool(threadNum) def __initWorkQueue(self,urls): for i in urls: self.workQueue.put((download_requests,i)) def __initThreadPool(self,threadNum): for i in range(threadNum): self.threadPool.append(work(self.workQueue)) def waitAllComplete(self): for i in self.threadPool: if i.isAlive(): i.join() class work(threading.Thread): def __init__(self,workQueue): threading.Thread.__init__(self) self.workQueue=workQueue self.start() def run(self): while True: if self.workQueue.qsize(): do,args=self.workQueue.get(block=False) do(args) self.workQueue.task_done() else: break urls = ['http://www.ustchacker.com'] * 10 urllibL = [] requestsL = [] multiPool = [] threadPool = [] N = 20 PoolNum = 100 for i in range(N): print('start %d try' % i) urllibT = startTimer() jobs = [download_urllib(url) for url in urls] #for status, data in jobs: # print(status, data[:10]) #tic(urllibT, 'urllib.request') urllibL.append(ticT(urllibT)) print('1') requestsT = startTimer() jobs = [download_requests(url) for url in urls] #for status, data in jobs: # print(status, data[:10]) #tic(requestsT, 'requests') requestsL.append(ticT(requestsT)) print('2') requestsT = startTimer() pool = multiprocessing.Pool(PoolNum) data = pool.map(download_requests, urls) pool.close() pool.join() multiPool.append(ticT(requestsT)) print('3') requestsT = startTimer() pool = threadPoolManager(urls, threadNum=PoolNum) pool.waitAllComplete() threadPool.append(ticT(requestsT)) print('4') import matplotlib.pyplot as plt x = list(range(1, N+1)) plt.plot(x, urllibL, label='urllib') plt.plot(x, requestsL, label='requests') plt.plot(x, multiPool, label='requests MultiPool') plt.plot(x, threadPool, label='requests threadPool') plt.xlabel('test number') plt.ylabel('time(s)') plt.legend() plt.show()
从上图可以看出,python3自带的urllib.request效率还是不如开源的requests,multiprocessing进程池效率明显提升,但还低于自己封装的线程池,有一部分原因是创建、调度进程的开销比创建线程高(测试程序中我把创建的代价也包括在里面)。
下面是gevent的测试代码:
import urllib.request import requests import time import gevent.pool import gevent.monkey gevent.monkey.patch_all() def startTimer(): return time.time() def ticT(startTime): useTime = time.time() - startTime return round(useTime, 3) #def tic(startTime, name): # useTime = time.time() - startTime # print('[%s] use time: %1.3f' % (name, useTime)) def download_urllib(url): req = urllib.request.Request(url, headers={'user-agent': 'Mozilla/5.0'}) res = urllib.request.urlopen(req) data = res.read() try: data = data.decode('gbk') except UnicodeDecodeError: data = data.decode('utf8', 'ignore') return res.status, data def download_requests(url): req = requests.get(url, headers={'user-agent': 'Mozilla/5.0'}) return req.status_code, req.text urls = ['http://www.ustchacker.com'] * 10 urllibL = [] requestsL = [] reqPool = [] reqSpawn = [] N = 20 PoolNum = 100 for i in range(N): print('start %d try' % i) urllibT = startTimer() jobs = [download_urllib(url) for url in urls] #for status, data in jobs: # print(status, data[:10]) #tic(urllibT, 'urllib.request') urllibL.append(ticT(urllibT)) print('1') requestsT = startTimer() jobs = [download_requests(url) for url in urls] #for status, data in jobs: # print(status, data[:10]) #tic(requestsT, 'requests') requestsL.append(ticT(requestsT)) print('2') requestsT = startTimer() pool = gevent.pool.Pool(PoolNum) data = pool.map(download_requests, urls) #for status, text in data: # print(status, text[:10]) #tic(requestsT, 'requests with gevent.pool') reqPool.append(ticT(requestsT)) print('3') requestsT = startTimer() jobs = [gevent.spawn(download_requests, url) for url in urls] gevent.joinall(jobs) #for i in jobs: # print(i.value[0], i.value[1][:10]) #tic(requestsT, 'requests with gevent.spawn') reqSpawn.append(ticT(requestsT)) print('4') import matplotlib.pyplot as plt x = list(range(1, N+1)) plt.plot(x, urllibL, label='urllib') plt.plot(x, requestsL, label='requests') plt.plot(x, reqPool, label='requests geventPool') plt.plot(x, reqSpawn, label='requests Spawn') plt.xlabel('test number') plt.ylabel('time(s)') plt.legend() plt.show()
从上图可以看到,对于I/O密集型任务,gevent还是能对性能做很大提升的,由于协程的创建、调度开销都比线程小的多,所以可以看到不论使用gevent的Spawn模式还是Pool模式,性能差距不大。
因为在gevent中需要使用monkey补丁,会提高gevent的性能,但会影响multiprocessing的运行,如果要同时使用,需要如下代码:
gevent.monkey.patch_all(thread=False, socket=False, select=False)
可是这样就不能充分发挥gevent的优势,所以不能把multiprocessing Pool、threading Pool、gevent Pool在一个程序中对比。不过比较两图可以得出结论,线程池和gevent的性能最优的,其次是进程池。附带得出个结论,requests库比urllib.request库性能要好一些哈:-)
转载请注明:转自http://blog.csdn.net/littlethunder/article/details/40983031