Kafka实战二

Kafka实战二

前言

在上一章 Kafka实战 中我们在局域网中搭建了一个Kafka节点,并尝试了通过命令行脚本来实现本地消息的发布与接收,了解了主从节点之间的关系等。这一章主要实现在本机通过Java代码实现对局域网中的Kafka节点进行消息的发布与接收。

准备工作

在Java中进行Kafka编程需要依赖kafka和kafka-clients两个包,下面直接提供maven配置文件pom.xml,不要忘记修改工程名:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <groupId>Test</groupId>
    <artifactId>Test</artifactId>
    <version>0.0.1-SNAPSHOT</version>
    <build>
        <sourceDirectory>src</sourceDirectory>
        <plugins>
            <plugin>
                <artifactId>maven-compiler-plugin</artifactId>
                <version>3.3</version>
                <configuration>
                    <source>1.7</source>
                    <target>1.7</target>
                </configuration>
            </plugin>

        </plugins>
    </build>
    <dependencies>
        <dependency>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka-clients</artifactId>
            <version>0.9.0.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka_2.10</artifactId>
            <version>0.9.0.0</version>
        </dependency>
    </dependencies>
</project>

生产者

生产者有两种发布方式,同步和异步。异步方式增加了一个Callback参数来实现在消息成功发送后,开展后续的工作。

import java.util.Properties;
import java.util.concurrent.ExecutionException;
import org.apache.kafka.clients.producer.Callback;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata;

public class Producer extends Thread {
  private final KafkaProducer<Integer, String> producer;
  private final String topic;
  // 是否需要异步发送
  private final Boolean isAsync;
  // 装有Kafka的机器的IP地址
  private final String serverIp = "10.64.***.***";

  public Producer(String topic, Boolean isAsync)
  {
    Properties props = new Properties();
    props.put("bootstrap.servers", serverIp+":9092");
    props.put("client.id", "DemoProducer");
    props.put("key.serializer", "org.apache.kafka.common.serialization.IntegerSerializer");
    props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
    producer = new KafkaProducer<Integer, String>(props);
    this.topic = topic;
    this.isAsync = isAsync;
  }

  public void run() {
    int messageNo = 1;
    while(true)
    {
      String messageStr = "Message_" + messageNo;
      long startTime = System.currentTimeMillis();
      if (isAsync) {
        producer.send(new ProducerRecord<Integer, String>(topic,
            messageNo,
            messageStr), new DemoCallBack(startTime, messageNo, messageStr));
      } else {
        try {
          producer.send(new ProducerRecord<Integer, String>(topic,
              messageNo,
              messageStr)).get();
          System.out.println("Sent message: (" + messageNo + ", " + messageStr + ")");
        } catch (InterruptedException e) {
          e.printStackTrace();
        } catch (ExecutionException e) {
          e.printStackTrace();
        }
      }
      ++messageNo;
    }
  }
}

class DemoCallBack implements Callback {
  private long startTime;
  private int key;
  private String message;

  public DemoCallBack(long startTime, int key, String message) {
    this.startTime = startTime;
    this.key = key;
    this.message = message;
  }

  /** * 当异步发送完成后需要进行的处理 **/
  public void onCompletion(RecordMetadata metadata, Exception exception) {
    long elapsedTime = System.currentTimeMillis() - startTime;
    if (metadata != null) {
      System.out.println(
          "message(" + key + ", " + message + ") sent to partition(" + metadata.partition() +
              "), " +
              "offset(" + metadata.offset() + ") in " + elapsedTime + " ms");
    } else {
      exception.printStackTrace();
    }
  }
}

调用方式:

    // 开启生产者线程后,会向Kafka节点中对应的topic发送Message_**类型的消息
    boolean isAsync = true;
    Producer producerThread = new Producer(KafkaProperties.topic, isAsync);
    producerThread.start();

消费者

消费者用来接收特定话题的消息。

import java.util.Collections;
import java.util.Properties;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import kafka.utils.ShutdownableThread;

public class Consumer extends ShutdownableThread {
  private final KafkaConsumer<Integer, String> consumer;
  private final String topic;
  private final String serverIp = "10.64.***.***";

  public Consumer(String topic)
  {
    super("KafkaConsumerExample", false);
    Properties props = new Properties();
    props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, serverIp+":9092");
    props.put(ConsumerConfig.GROUP_ID_CONFIG, "DemoConsumer");
    props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "true");
    props.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "1000");
    props.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, "30000");
    props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.IntegerDeserializer");
    props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");

    consumer = new KafkaConsumer<>(props);
    this.topic = topic;
  }

  @Override
  public void doWork() {
    consumer.subscribe(Collections.singletonList(this.topic));
    ConsumerRecords<Integer, String> records = consumer.poll(1000);
    for (ConsumerRecord<Integer, String> record : records) {
      System.out.println("Received message: (" + record.key() + ", " + record.value() + ") at offset " + record.offset());
    }
  }

  @Override
  public String name() {
    return null;
  }

  @Override
  public boolean isInterruptible() {
    return false;
  }
}

调用方式:

    //开启消费者线程后,会接收到之前生产者发送的消息
    Consumer consumerThread = new Consumer(KafkaProperties.topic);
    consumerThread.start();

总结

通过上面的简单的例子,我们就可以在自己的工程中向Kafka发送消息,并接收到自己订阅的消息了。

你可能感兴趣的:(apache,kafka,分布式)