【CF 617E】 XOR and Favorite Number (Mo's algorithm)
Bob has a favorite number k and ai of length n. Now he asks you to answer m queries. Each query is given by a pair li and ri and asks you to count the number of pairs of integers i and j, such that l ≤ i ≤ j ≤ r and the xor of the numbers ai, ai + 1, ..., aj is equal to k.
The first line of the input contains integers n, m and k (1 ≤ n, m ≤ 100 000, 0 ≤ k ≤ 1 000 000) — the length of the array, the number of queries and Bob's favorite number respectively.
The second line contains n integers ai (0 ≤ ai ≤ 1 000 000) — Bob's array.
Then m lines follow. The i-th line contains integers li and ri (1 ≤ li ≤ ri ≤ n) — the parameters of the i-th query.
Print m lines, answer the queries in the order they appear in the input.
6 2 3 1 2 1 1 0 3 1 6 3 5
7 0
5 3 1 1 1 1 1 1 1 5 2 4 1 3
9 4 4
In the first sample the suitable pairs of i and j for the first query are: (1, 2), (1, 4), (1, 5), (2, 3), (3, 6), (5, 6), (6, 6). Not a single of these pairs is suitable for the second query.
In the second sample xor equals 1 for all subarrays of an odd length.
题目大意是找某个区间内连续异或能得到K的区间数
现在先考虑单组区间查询。对于区间[L,R] 可以求个前缀和pre[i] 表示第1~i的数的异或和。这样[L,R]的异或和即为pre[L-1]^pre[R] 换种思路 预存一下pre[L-1]^k 就可以延长它的生命周期。
这样求[L,R]区间内能异或出k的区间数 从L遍历到R 遍历过程中统计遍历过的前缀异或和的个数 当遍历到i时 pre[i]^k出现的次数即为[L,i]中到i的连续的能异或得到k的区间数
这样如果区间向左或向右就可以O(1)的修改 对于多组查询 就可以上莫队算法了
代码如下:
#include <iostream> #include <cmath> #include <vector> #include <cstdlib> #include <cstdio> #include <cstring> #include <queue> #include <list> #include <algorithm> #include <map> #include <set> #define LL long long #define Pr pair<int,int> #define fread() freopen("in.in","r",stdin) #define fwrite() freopen("out.out","w",stdout) using namespace std; const int INF = 0x3f3f3f3f; const int msz = 100100; const double eps = 1e-8; //L的分块 int pos[msz]; struct Range { int l,r,id; bool operator < (const struct Range a)const { return pos[l] == pos[a.l]? r < a.r: pos[l] < pos[a.l]; } }; Range rg[msz]; int a[msz]; //统计出现过的异或数 LL cnt[1048576]; LL ans[msz]; LL num; int n,m,k; //移动区间边界时更新 void update(int x,int d) { if(d < 0) cnt[k^a[x]] +=d; num += d*cnt[a[x]]; if(d > 0) cnt[k^a[x]] +=d; } int main() { scanf("%d%d%d",&n,&m,&k); int dm = ceil(sqrt(n*1.0)); a[0] = 0; a[n+1] = 0; for(int i = 1; i <= n; ++i) { scanf("%d",&a[i]); a[i] ^= a[i-1]; } for(int i = 0; i < m; ++i) { scanf("%d%d",&rg[i].l,&rg[i].r); rg[i].l--; pos[rg[i].l] = rg[i].l/dm; rg[i].id = i; } sort(rg,rg+m); int l = 1,r = 0; num = 0; memset(cnt,0,sizeof(cnt)); for(int i = 0; i < m; ++i) { int id = rg[i].id; if(rg[i].l == rg[i].r-1) { ans[id] = (a[rg[i].r]^a[rg[i].l]) == k; continue; } while(r < rg[i].r) update(++r,1); while(r > rg[i].r) update(r--,-1); while(l < rg[i].l) update(l++,-1); while(l > rg[i].l) update(--l,1); ans[id] = num; } for(int i = 0; i < m; ++i) printf("%lld\n",ans[i]); return 0; }