现在,有了hash code,来考虑如何计算放入数组的位置。hash code值通常会很大,但是数组的大小有限,默认只有16,大的也不能超过2的30次方。所以,用模运算来保证在数组大小范围内是合理的,比如:index = hash code % array size.不过这有点慢,JDK采用了更快的算法。这个更快的算法源于一个数学规律,就是如果size是2的N次方,那么数X对size的模运算结果等价于X和size-1的按位与运算,也就是 X % size <=> X & (size -1).按位与只消耗一个CPU周期,当然快多了。现在就可理解为什么要故意把数组大小弄成2的N次方了。再回头看一开始计算数组大小的代码,完全理解了。
int capacity = 1; while (capacity < initialCapacity) capacity <<= 1;
通过观察这三个例子,又可以发现一个特点,也就是X & size-1 的结果受到了size的阶数的限制,这里size=16,阶数为4.结果就是只用低4位的1和X按位与,而X的高位没有用到。这会导致重复率相当高。如果用一个算法将X的低位重新计算,比如根据所有位的值进行重新计算,就可以使得hash值分布更均匀。下面的代码揭示了在真正按位与之前,调用了hash函数,进行了一堆位运算。至于为什么用这个算法,我也不知道其来历。不过这里一篇帖子演示了这个hash函数会导致bit的随机性,可以作为理解的开始。
http://stackoverflow.com/questions/9335169/understanding-strange-java-hash-function
public V put(K key, V value) { if (key == null) return putForNullKey(value); int hash = hash(key.hashCode()); int i = indexFor(hash, table.length); for (Entry<K,V> e = table[i]; e != null; e = e.next) { Object k; if (e.hash == hash && ((k = e.key) == key || key.equals(k))) { V oldValue = e.value; e.value = value; e.recordAccess(this); return oldValue; } } modCount++; addEntry(hash, key, value, i); return null; } static int hash(int h) { // This function ensures that hashCodes that differ only by // constant multiples at each bit position have a bounded // number of collisions (approximately 8 at default load factor). h ^= (h >>> 20) ^ (h >>> 12); return h ^ (h >>> 7) ^ (h >>> 4); } static int indexFor(int h, int length) { return h & (length-1); } void addEntry(int hash, K key, V value, int bucketIndex) { Entry<K,V> e = table[bucketIndex]; table[bucketIndex] = new Entry<K,V>(hash, key, value, e); if (size++ >= threshold) resize(2 * table.length); }