多尺度空间

多尺度空间

想要得知图像中哪些是有意义的,必须先要明确这样一个问题:在一幅图像中,只有在一定的尺度范围内,一个物体才有意义。举一个例子,树枝这个概念,只有在几厘米到几米的距离去观察它,才能感知到它的确是树枝;如果在微米级或者千米级去观察,就不能感知到树枝这个概念了,这样的话可以感知到的是细胞或者是森林的概念。因而,如果想要描述现实世界的结构,或者将三维物体映射到二维的图像上去,多尺度表示将会至关重要。多尺度表示的概念很容易理解,举例说明,绘制地图时会有比例尺的概念。世界地图中就只能够显示大洲大洋,以及较大的地域和国家;而一个城市地图,甚至可以详细显示出每条街道。


多尺度表示的思想是,将原始信号“嵌入”到采用一个单参数变换得到的一系列信号中去,

变换得到的每个信号对应于单参数族中的一个参数。一个重要的要求是,多尺度表示中的较粗尺度应该是较细尺度的简化,而且较粗尺度是通过某种固定的方式,由较细尺度图像经过平滑得到。要满足这个性质,可以有多种实现方式。但是一点不变,那就是高斯函数是唯一可用的平滑函数。


实现多尺度表示有多种方式,比如,早期会采用四分树或者八分树,以及图像金字塔。金字塔是结合降采样操作和平滑操作的一种图像表示方式。它的一个很大的好处是,自下而上每一层的像素数都不断减少,这会大大减少计算量;而缺点是自下而上金字塔的量化变得越来越粗糙,而且速度很快。(需要强调的是,这里的金字塔构造方法和小波金字塔的构造方法是类似的,对某一层的图像进行平滑之后,再做降采样,平滑目的是为了降采样后的像素点能更好的代表原图像的像素点,与多尺度表示中的平滑完全不是一个目的)


上面提到的四分树或者八分树以及金字塔表示法,在获得多尺度时所采取的步骤是相当粗略的,尺度与尺度之间的“间隔”太大。而这里要提到的“尺度空间”(Scale-Space)表示法是多尺度表示的另外一种有效方法,它的尺度参数是连续的,并且所有尺度上空间采样点个数是相同的(实际上,一个尺度上得到的就是一幅图像,尺度空间采样点也就是该尺度上图像的像素点。也就是说,尺度空间表示法在各个尺度上图像的分辨率都是一样的).尺度空间表示的主要思想是,由原始信号(例如一幅图像)生成一系列信号,并用这些信号来表示原始信号,这个过程中,精细尺度的信息被逐步的平滑掉(可以认为是细节信息被丢弃)


多尺度空间是由原始图像和二维高斯函数进行卷积,通过不断改变参数t,得到连续变化的图像,这些图像的信息和原始图像相比逐渐减少,细节信息逐渐被平滑掉,但是像素个数保持不变,即分辨率不变。图像金字塔则是通过每次减少若干行的像素来减少分辨率,使图像信息减少,两者不同。



你可能感兴趣的:(多尺度空间)