第一天的课程感觉比较简单,主要介绍Karplus-Strong Algorithm
给出方程 y[n]=αy[n−M]+x[n],
x[n]是输入,M是延迟,α是衰弱系数
我们要衰减D次,总的采样数就是D*M
下面是最直接的实现
关于x = x(:).';的语法是这样的,这是一个转置,但是是非共轭转置,如果是x',那么1+i就成了1-i
function y = ks_loop(x, alpha, D) % Length of the output signal must be larger than the length of the input signal, % that is, D must be larger than 1 if D < 1 error('Duration D must be greater than 1'); end % Make sure the input is a row-vector x = x(:).'; % Number of input samples M = length(x); % Number of output samples size_y = D * M; % Initialize with random input x y = zeros(1, size_y); y(1:M) = x; for index = (M+1):size_y y(index) = alpha * y(index - M); end y = y(:); return
下面来测试一下
x = randn(100, 1);
stem(x);
y = ks_loop(x, 0.9, 10);
stem(y);
其实,你已经完成了KS算法
要知道,在matlab和octave这样的软件中,矩阵运算比单个运算速度要快很多,于是就有了优化的版本
function y = ks(x, alpha, D) % Length of the output signal must be larger than the length of the input signal, % that is, D must be larger than 1 if D < 1 error('Duration D must be greater than 1.'); end % Make sure the input is a row-vector x = x(:).'; % Number of input samples M = length(x); % number of output samples size_y = D * M; % Create a vector of the powers of alpha, [alpha^0 alpha^1 ....] size_alphaVector = D; alphaVector = (alpha*ones(size_alphaVector,1)).^((0:(size_alphaVector-1))'); % Create a matrix with M columns, each being the vector of the powers of alpha alphaMatrix = repmat(alphaVector, 1, M); % Create a matrix with D rows filled by the input signal x xMatrix = repmat(x, D, 1); % Multipliy the two, and take the transpose so we can read it out % column-by-column yMatrix = (alphaMatrix .* xMatrix).'; % Read out the output column by columnn y = yMatrix(:); return
y是我们的采样数据,FS是频率
下面这个例子可以播放opening chord of Hard day's night 开头的音乐,太神奇了
因为牵扯到音乐的相关知识,一些参数就不大懂,只画出了最后的采样图看看
clear all close all clc % Parameters: % % - Fs : sampling frequency % - F0 : frequency of the notes forming chord % - gain : gains of individual notes in the chord % - duration : duration of the chord in second % - alpha : attenuation in KS algorithm Fs = 48000; % D2, D3, F3, G3, F4, A4, C5, G5 F0 = 440*[2^-(31/12); 2^-(19/12); 2^-(16/12); 2^(-14/12); 2^-(4/12); 1; 2^(3/12); 2^(10/12)]; gain = [1.2 3.0 1.0 2.2 1.0 1.0 1.0 3.5]; duration = 4; alpha = 0.9785; % Number of samples in the chord nbsample_chord = Fs*duration; % This is used to correct alpha later, so that all the notes decay together % (with the same decay rate) first_duration = ceil(nbsample_chord / round(Fs/F0(1))); % Initialization chord = zeros(nbsample_chord, 1); for i = 1:length(F0) % Get M and duration parameter current_M = round(Fs/F0(i)); current_duration = ceil(nbsample_chord/current_M); % Correct current alpha so that all the notes decay together (with the % same decay rate) current_alpha = alpha^(first_duration/current_duration); % Let Paul's high D on the bass ring a bit longer if i == 2 current_alpha = current_alpha^.8; end % Generate input and output of KS algorithm x = rand(current_M, 1); y = ks(x, current_alpha, current_duration); y = y(1:nbsample_chord); % Construct the chord by adding the generated note (with the % appropriate gain) chord = chord + gain(i) * y; end % Play output soundsc(chord, Fs);