hadoop2.6.3 集群部署

准备工作

准备三台ubuntu1404 环境

master  192.168.12.127

slave1  192.168.12.132

slave2  192.168.12.133

本例是通过openstack 创建的三台VM

hadoop2.6.3 集群部署_第1张图片

配置三个节点间ssh 免密码登录

在slave1上

生成密钥,ssh-keygen -t dsa -P '' -f ~/.ssh/id_dsa

在slave2上

生成密钥,ssh-keygen -t dsa -P '' -f ~/.ssh/id_dsa

在master 上

1. 生成密钥,ssh-keygen -t dsa -P '' -f ~/.ssh/id_dsa
2. 将公钥追加到授权的key中,cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys

3,scp [email protected]:/home/supermap/.ssh/id_dsa.pub ~/.ssh/id_dsa_132.pub

4,scp [email protected]:/home/supermap/.ssh/id_dsa.pub ~/.ssh/id_dsa_133.pub

5,cat ~/.ssh/id_dsa_132.pub >> ~/.ssh/authorized_keys

6,cat ~/.ssh/id_dsa_133.pub >> ~/.ssh/authorized_keys

7,scp ~/.ssh/authorized_keys [email protected]:/home/supermap/.ssh/authorized_keys

8,scp ~/.ssh/authorized_keys [email protected]:/home/supermap/.ssh/authorized_keys

测试ssh

supermap@master:~$ ssh slave1
Welcome to Ubuntu 14.04 LTS (GNU/Linux 3.13.0-24-generic x86_64)

 * Documentation:  https://help.ubuntu.com/

  System information as of Fri Jan  8 15:58:58 CST 2016

  System load:  0.01              Processes:           102
  Usage of /:   7.2% of 27.20GB   Users logged in:     1
  Memory usage: 2%                IP address for eth0: 192.168.12.132
  Swap usage:   0%

  Graph this data and manage this system at:
    https://landscape.canonical.com/

Last login: Fri Jan  8 15:50:22 2016 from 192.168.13.8
supermap@slave1:~$ 

安装jdk1.7 

apt-get install openjdk-7-jdk
查看jdk默认 安装目录
root@slave1:~# ll /usr/lib/jvm/java-7-openjdk-amd64
total 28
drwxr-xr-x 7 root root 4096 Jan  8 11:02 ./
drwxr-xr-x 3 root root 4096 Jan  8 10:58 ../
lrwxrwxrwx 1 root root   22 Nov 19 18:39 ASSEMBLY_EXCEPTION -> jre/ASSEMBLY_EXCEPTION
lrwxrwxrwx 1 root root   22 Nov 19 18:39 THIRD_PARTY_README -> jre/THIRD_PARTY_README
drwxr-xr-x 2 root root 4096 Jan  8 11:02 bin/
lrwxrwxrwx 1 root root   41 Nov 19 18:39 docs -> ../../../share/doc/openjdk-7-jre-headless/
drwxr-xr-x 3 root root 4096 Jan  8 11:02 include/
drwxr-xr-x 5 root root 4096 Jan  8 10:58 jre/
drwxr-xr-x 3 root root 4096 Jan  8 11:02 lib/
drwxr-xr-x 4 root root 4096 Jan  8 10:58 man/
lrwxrwxrwx 1 root root   20 Nov 19 18:39 src.zip -> ../openjdk-7/src.zip
root@slave1:~#

安装hadoop

下载hadoop2.6.3,下载链接 http://hadoop.apache.org/releases.html

解压 tar -xvf hadoop-2.6.3.tar.gz ,并在主目录下创建tmpdfsdfs/namedfs/node

supermap@slave1:~$ pwd
/home/supermap
supermap@slave1:~$ ll hadoop-2.6.3
total 72
drwxr-xr-x 12 supermap supermap  4096 Jan  8 11:33 ./
drwxr-xr-x  5 supermap supermap  4096 Jan  8 15:53 ../
-rw-r--r--  1 supermap supermap 15429 Dec 18 09:52 LICENSE.txt
-rw-r--r--  1 supermap supermap   101 Dec 18 09:52 NOTICE.txt
-rw-r--r--  1 supermap supermap  1366 Dec 18 09:52 README.txt
drwxr-xr-x  2 supermap supermap  4096 Dec 18 09:52 bin/
drwxrwxr-x  4 supermap supermap  4096 Jan  8 11:34 dfs/
drwxrwxr-x  2 supermap supermap  4096 Jan  8 11:33 dsf/
drwxr-xr-x  3 supermap supermap  4096 Dec 18 09:52 etc/
drwxr-xr-x  2 supermap supermap  4096 Dec 18 09:52 include/
drwxr-xr-x  3 supermap supermap  4096 Dec 18 09:52 lib/
drwxr-xr-x  2 supermap supermap  4096 Dec 18 09:52 libexec/
drwxr-xr-x  2 supermap supermap  4096 Dec 18 09:52 sbin/
drwxr-xr-x  4 supermap supermap  4096 Dec 18 09:52 share/
drwxrwxr-x  2 supermap supermap  4096 Jan  8 11:33 tmp/

配置hadoop

配置hadoop 守护进程的运行环境

编辑etc/hadoop/hadoop-env.sh

修改其中JAVA_HOME=实际安装目录export JAVA_HOME=/usr/lib/jvm/java-7-openjdk-amd64

配置hadoop 守护进程的运行参数 

配置 core-site.xml文件-->>增加hadoop核心配置(hdfs文件端口是9000、file:/home/supermp/hadoop-2.6.3/tmp、)
<configuration>
 <property>
  <name>fs.defaultFS</name>
  <value>hdfs://master:9000</value>
 </property>
 <property>
  <name>io.file.buffer.size</name>
  <value>131072</value>
 </property>
 <property>
  <name>hadoop.tmp.dir</name>
  <value>file:/home/supermap/hadoop-2.6.3/tmp</value>
  <description>Abasefor other temporary directories.</description>
 </property>
 <property>
  <name>hadoop.proxyuser.spark.hosts</name>
  <value>*</value>
 </property>
<property>
  <name>hadoop.proxyuser.spark.groups</name>
  <value>*</value>
 </property>
</configuration>
配置  hdfs-site.xml 文件-->>增加hdfs配置信息(namenode、datanode端口和目录位置)
<configuration>
 <property>
  <name>dfs.namenode.secondary.http-address</name>
  <value>master:9001</value>
 </property>
  <property>
   <name>dfs.namenode.name.dir</name>
   <value>file:/home/supermap/hadoop-2.6.3/dfs/name</value>
 </property>
 <property>
  <name>dfs.datanode.data.dir</name>
  <value>file:/home/supermap/hadoop-2.6.3/dfs/data</value>
  </property>
 <property>
  <name>dfs.replication</name>
  <value>3</value>
 </property>
 <property>
  <name>dfs.webhdfs.enabled</name>
  <value>true</value>
 </property>
</configuration>
配置  mapred-site.xml 文件-->>增加mapreduce配置(使用yarn框架、jobhistory使用地址以及web地址)
<configuration>
  <property>
   <name>mapreduce.framework.name</name>
   <value>yarn</value>
 </property>
 <property>
  <name>mapreduce.jobhistory.address</name>
  <value>master:10020</value>
 </property>
 <property>
  <name>mapreduce.jobhistory.webapp.address</name>
  <value>master:19888</value>
 </property>
</configuration>
配置   yarn-site.xml  文件-->>增加yarn功能
<configuration>
  <property>
   <name>yarn.nodemanager.aux-services</name>
   <value>mapreduce_shuffle</value>
  </property>
  <property>
   <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
   <value>org.apache.hadoop.mapred.ShuffleHandler</value>
  </property>
  <property>
   <name>yarn.resourcemanager.address</name>
   <value>master:8032</value>
  </property>
  <property>
   <name>yarn.resourcemanager.scheduler.address</name>
   <value>master:8030</value>
  </property>
  <property>
   <name>yarn.resourcemanager.resource-tracker.address</name>
   <value>master:8035</value>
  </property>
  <property>
   <name>yarn.resourcemanager.admin.address</name>
   <value>master:8033</value>
  </property>
  <property>
   <name>yarn.resourcemanager.webapp.address</name>
   <value>master:8088</value>
  </property>
</configuration>

同步配置到两个salve

supermap@master:~/hadoop-2.6.3/etc$ scp -r hadoop supermap@slave1:/home/supermap/hadoop-2.6.3/etc

hadoop2.6.3 集群部署_第2张图片

添加 slave1,slave2 到集群

编辑slaves 文件

supermap@master:~/hadoop-2.6.3/etc/hadoop$ cat slaves 
master
slave1
slave2

启动hadoop 集群

格式化一个新的分布式文件系统:
$ bin/hadoop namenode -format
启动HDFS

$ sbin/start-dfs.sh

sbin/start-dfs.sh脚本会参照 slaves文件的内容,在所有列出的slave上启动DataNode守护进程

supermap@master:~/hadoop-2.6.3$ ./sbin/start-dfs.sh 
Starting namenodes on [master]
master: starting namenode, logging to /home/supermap/hadoop-2.6.3/logs/hadoop-supermap-namenode-master.out
slave1: starting datanode, logging to /home/supermap/hadoop-2.6.3/logs/hadoop-supermap-datanode-slave1.out
slave2: starting datanode, logging to /home/supermap/hadoop-2.6.3/logs/hadoop-supermap-datanode-slave2.out
master: starting datanode, logging to /home/supermap/hadoop-2.6.3/logs/hadoop-supermap-datanode-master.out
Starting secondary namenodes [master]
master: starting secondarynamenode, logging to /home/supermap/hadoop-2.6.3/logs/hadoop-supermap-secondarynamenode-master.out

启动yarn 

supermap@master:~/hadoop-2.6.3$ ./sbin/start-yarn.sh 
starting yarn daemons
starting resourcemanager, logging to /home/supermap/hadoop-2.6.3/logs/yarn-supermap-resourcemanager-master.out
master: starting nodemanager, logging to /home/supermap/hadoop-2.6.3/logs/yarn-supermap-nodemanager-master.out
slave2: starting nodemanager, logging to /home/supermap/hadoop-2.6.3/logs/yarn-supermap-nodemanager-slave2.out
slave1: starting nodemanager, logging to /home/supermap/hadoop-2.6.3/logs/yarn-supermap-nodemanager-slave1.out

检查集群状态

supermap@master:~/hadoop-2.6.3$ ./bin/hdfs dfsadmin -report
Configured Capacity: 58405412864 (54.39 GB)
Present Capacity: 51191595008 (47.68 GB)
DFS Remaining: 51191545856 (47.68 GB)
DFS Used: 49152 (48 KB)
DFS Used%: 0.00%
Under replicated blocks: 0
Blocks with corrupt replicas: 0
Missing blocks: 0

-------------------------------------------------
Live datanodes (2):

Name: 192.168.12.132:50010 (slave1)
Hostname: slave1
Decommission Status : Normal
Configured Capacity: 29202706432 (27.20 GB)
DFS Used: 24576 (24 KB)
Non DFS Used: 3606908928 (3.36 GB)
DFS Remaining: 25595772928 (23.84 GB)
DFS Used%: 0.00%
DFS Remaining%: 87.65%
Configured Cache Capacity: 0 (0 B)
Cache Used: 0 (0 B)
Cache Remaining: 0 (0 B)
Cache Used%: 100.00%
Cache Remaining%: 0.00%
Xceivers: 1
Last contact: Fri Jan 08 16:51:01 CST 2016


Name: 192.168.12.133:50010 (slave2)
Hostname: slave2
Decommission Status : Normal
Configured Capacity: 29202706432 (27.20 GB)
DFS Used: 24576 (24 KB)
Non DFS Used: 3606908928 (3.36 GB)
DFS Remaining: 25595772928 (23.84 GB)
DFS Used%: 0.00%
DFS Remaining%: 87.65%
Configured Cache Capacity: 0 (0 B)
Cache Used: 0 (0 B)
Cache Remaining: 0 (0 B)
Cache Used%: 100.00%
Cache Remaining%: 0.00%
Xceivers: 1
Last contact: Fri Jan 08 16:51:01 CST 2016

查看集群

通过http://master:8088/cluster/nodes 查看集群
hadoop2.6.3 集群部署_第3张图片

测试集群

使用hadoop自带的实例进行测试
首先在hdfs中创建一个文件夹
bin/hdfs dfs -mkdir /input
导入一个文件到hdfs中
bin/hdfs dfs -copyFromLocal LICENSE.txt /input
进入share/hadoop/mapreduce目录下执行
../../../bin/hadoop jar hadoop-mapreduce-examples-2.6.3.jar wordcount /input /output

supermap@master:~/hadoop-2.6.3/share/hadoop/mapreduce$ ../../../bin/hadoop jar hadoop-mapreduce-examples-2.6.3.jar wordcount /input /output
16/01/08 16:56:52 INFO client.RMProxy: Connecting to ResourceManager at master/192.168.12.127:8032
16/01/08 16:56:53 INFO input.FileInputFormat: Total input paths to process : 0
16/01/08 16:56:53 INFO mapreduce.JobSubmitter: number of splits:0
16/01/08 16:56:54 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1452243042219_0002
16/01/08 16:56:55 INFO impl.YarnClientImpl: Submitted application application_1452243042219_0002
16/01/08 16:56:55 INFO mapreduce.Job: The url to track the job: http://master:8088/proxy/application_1452243042219_0002/
16/01/08 16:56:55 INFO mapreduce.Job: Running job: job_1452243042219_0002
16/01/08 16:57:03 INFO mapreduce.Job: Job job_1452243042219_0002 running in uber mode : false
16/01/08 16:57:03 INFO mapreduce.Job:  map 0% reduce 0%
16/01/08 16:57:10 INFO mapreduce.Job:  map 0% reduce 100%
16/01/08 16:57:11 INFO mapreduce.Job: Job job_1452243042219_0002 completed successfully
16/01/08 16:57:11 INFO mapreduce.Job: Counters: 38
        File System Counters
                FILE: Number of bytes read=0
                FILE: Number of bytes written=106221
                FILE: Number of read operations=0
                FILE: Number of large read operations=0
                FILE: Number of write operations=0
                HDFS: Number of bytes read=0
                HDFS: Number of bytes written=0
                HDFS: Number of read operations=3
                HDFS: Number of large read operations=0
                HDFS: Number of write operations=2
        Job Counters 
                Launched reduce tasks=1
                Total time spent by all maps in occupied slots (ms)=0
                Total time spent by all reduces in occupied slots (ms)=3848
                Total time spent by all reduce tasks (ms)=3848
                Total vcore-milliseconds taken by all reduce tasks=3848
                Total megabyte-milliseconds taken by all reduce tasks=3940352
        Map-Reduce Framework
                Combine input records=0
                Combine output records=0
                Reduce input groups=0
                Reduce shuffle bytes=0
                Reduce input records=0
                Reduce output records=0
                Spilled Records=0
                Shuffled Maps =0
                Failed Shuffles=0
                Merged Map outputs=0
                GC time elapsed (ms)=24
                CPU time spent (ms)=400
                Physical memory (bytes) snapshot=167751680
                Virtual memory (bytes) snapshot=843304960
                Total committed heap usage (bytes)=110624768
        Shuffle Errors
                BAD_ID=0
                CONNECTION=0
                IO_ERROR=0
                WRONG_LENGTH=0
                WRONG_MAP=0
                WRONG_REDUCE=0
        File Output Format Counters 
                Bytes Written=0


查看结果
 bin/hadoop fs -cat /output/*
执行结束后可以通过 http://master:8088 查看任务

hadoop2.6.3 集群部署_第4张图片


你可能感兴趣的:(hadoop2.6.3 集群部署)