首先,geohash用一个字符串表示经度和纬度两个坐标。某些情况下无法在两列上同时应用索引 (例如MySQL 4之前的版本,Google App Engine的数据层等),利用geohash,只需在一列上应用索引即可。
其次,geohash表示的并不是一个点,而是一个矩形区域。比如编码wx4g0ec19,它表示的是一个矩形区域。 使用者可以发布地址编码,既能表明自己位于北海公园附近,又不至于暴露自己的精确坐标,有助于隐私保护。
第三,编码的前缀可以表示更大的区域。例如wx4g0ec1,它的前缀wx4g0e表示包含编码wx4g0ec1在内的更大范围。 这个特性可以用于附近地点搜索。首先根据用户当前坐标计算geohash(例如wx4g0ec1)然后取其前缀进行查询 (SELECT * FROM place WHERE geohash LIKE 'wx4g0e%'),即可查询附近的所有地点。
Geohash比直接用经纬度的高效很多。
Geohash的最简单的解释就是:将一个经纬度信息,转换成一个可以排序,可以比较的字符串编码
首先将纬度范围(-90, 90)平分成两个区间(-90,0)、(0, 90),如果目标纬度位于前一个区间,则编码为0,否则编码为1。由于39.92324属于(0, 90),所以取编码为1。然后再将(0, 90)分成 (0, 45), (45, 90)两个区间,而39.92324位于(0, 45),所以编码为0。以此类推,直到精度符合要求为止,得到纬度编码为1011 1000 1100 0111 1001。
纬度范围 |
划分区间0 |
划分区间1 |
39.92324所属区间 |
(-90, 90) |
(-90, 0.0) |
(0.0, 90) |
1 |
(0.0, 90) |
(0.0, 45.0) |
(45.0, 90) |
0 |
(0.0, 45.0) |
(0.0, 22.5) |
(22.5, 45.0) |
1 |
(22.5, 45.0) |
(22.5, 33.75) |
(33.75, 45.0) |
1 |
(33.75, 45.0) |
(33.75, 39.375) |
(39.375, 45.0) |
1 |
(39.375, 45.0) |
(39.375, 42.1875) |
(42.1875, 45.0) |
0 |
(39.375, 42.1875) |
(39.375, 40.7812) |
(40.7812, 42.1875) |
0 |
(39.375, 40.7812) |
(39.375, 40.0781) |
(40.0781, 40.7812) |
0 |
(39.375, 40.0781) |
(39.375, 39.7265) |
(39.7265, 40.0781) |
1 |
(39.7265, 40.0781) |
(39.7265, 39.9023) |
(39.9023, 40.0781) |
1 |
(39.9023, 40.0781) |
(39.9023, 39.9902) |
(39.9902, 40.0781) |
0 |
(39.9023, 39.9902) |
(39.9023, 39.9462) |
(39.9462, 39.9902) |
0 |
(39.9023, 39.9462) |
(39.9023, 39.9243) |
(39.9243, 39.9462) |
0 |
(39.9023, 39.9243) |
(39.9023, 39.9133) |
(39.9133, 39.9243) |
1 |
(39.9133, 39.9243) |
(39.9133, 39.9188) |
(39.9188, 39.9243) |
1 |
(39.9188, 39.9243) |
(39.9188, 39.9215) |
(39.9215, 39.9243) |
1 |
经度也用同样的算法,对(-180, 180)依次细分,得到116.3906的编码为1101 0010 1100 0100 0100。
经度范围 |
划分区间0 |
划分区间1 |
116.3906所属区间 |
(-180, 180) |
(-180, 0.0) |
(0.0, 180) |
1 |
(0.0, 180) |
(0.0, 90.0) |
(90.0, 180) |
1 |
(90.0, 180) |
(90.0, 135.0) |
(135.0, 180) |
0 |
(90.0, 135.0) |
(90.0, 112.5) |
(112.5, 135.0) |
1 |
(112.5, 135.0) |
(112.5, 123.75) |
(123.75, 135.0) |
0 |
(112.5, 123.75) |
(112.5, 118.125) |
(118.125, 123.75) |
0 |
(112.5, 118.125) |
(112.5, 115.312) |
(115.312, 118.125) |
1 |
(115.312, 118.125) |
(115.312, 116.718) |
(116.718, 118.125) |
0 |
(115.312, 116.718) |
(115.312, 116.015) |
(116.015, 116.718) |
1 |
(116.015, 116.718) |
(116.015, 116.367) |
(116.367, 116.718) |
1 |
(116.367, 116.718) |
(116.367, 116.542) |
(116.542, 116.718) |
0 |
(116.367, 116.542) |
(116.367, 116.455) |
(116.455, 116.542) |
0 |
(116.367, 116.455) |
(116.367, 116.411) |
(116.411, 116.455) |
0 |
(116.367, 116.411) |
(116.367, 116.389) |
(116.389, 116.411) |
1 |
(116.389, 116.411) |
(116.389, 116.400) |
(116.400, 116.411) |
0 |
(116.389, 116.400) |
(116.389, 116.394) |
(116.394, 116.400) |
0 |
接下来将经度和纬度的编码合并,奇数位是纬度,偶数位是经度,得到编码 11100 11101 00100 01111 00000 01101 01011 00001。
最后,用0-9、b-z(去掉a, i, l, o)这32个字母进行base32编码,得到(39.92324, 116.3906)的编码为wx4g0ec1。
十进制 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
base32 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
b |
c |
d |
e |
f |
g |
十进制 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
base32 |
h |
j |
k |
m |
n |
p |
q |
r |
s |
t |
u |
v |
w |
x |
y |
z |
解码算法与编码算法相反,先进行base32解码,然后分离出经纬度,最后根据二进制编码对经纬度范围进行细分即可,这里不再赘述。
php版本的实现方式:http://blog.dixo.net/downloads/geohash-php-class/ 我下载了一个上传的
php:
geohash.class.php
<?php /** * Geohash generation class * http://blog.dixo.net/downloads/ * * This file copyright (C) 2008 Paul Dixon ([email protected]) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 3 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /** * Encode and decode geohashes * */ class Geohash { private $coding="0123456789bcdefghjkmnpqrstuvwxyz"; private $codingMap=array(); public function Geohash() { //build map from encoding char to 0 padded bitfield for($i=0; $i<32; $i++) { $this->codingMap[substr($this->coding,$i,1)]=str_pad(decbin($i), 5, "0", STR_PAD_LEFT); } } /** * Decode a geohash and return an array with decimal lat,long in it */ public function decode($hash) { //decode hash into binary string $binary=""; $hl=strlen($hash); for($i=0; $i<$hl; $i++) { $binary.=$this->codingMap[substr($hash,$i,1)]; } //split the binary into lat and log binary strings $bl=strlen($binary); $blat=""; $blong=""; for ($i=0; $i<$bl; $i++) { if ($i%2) $blat=$blat.substr($binary,$i,1); else $blong=$blong.substr($binary,$i,1); } //now concert to decimal $lat=$this->binDecode($blat,-90,90); $long=$this->binDecode($blong,-180,180); //figure out how precise the bit count makes this calculation $latErr=$this->calcError(strlen($blat),-90,90); $longErr=$this->calcError(strlen($blong),-180,180); //how many decimal places should we use? There's a little art to //this to ensure I get the same roundings as geohash.org $latPlaces=max(1, -round(log10($latErr))) - 1; $longPlaces=max(1, -round(log10($longErr))) - 1; //round it $lat=round($lat, $latPlaces); $long=round($long, $longPlaces); return array($lat,$long); } /** * Encode a hash from given lat and long */ public function encode($lat,$long) { //how many bits does latitude need? $plat=$this->precision($lat); $latbits=1; $err=45; while($err>$plat) { $latbits++; $err/=2; } //how many bits does longitude need? $plong=$this->precision($long); $longbits=1; $err=90; while($err>$plong) { $longbits++; $err/=2; } //bit counts need to be equal $bits=max($latbits,$longbits); //as the hash create bits in groups of 5, lets not //waste any bits - lets bulk it up to a multiple of 5 //and favour the longitude for any odd bits $longbits=$bits; $latbits=$bits; $addlong=1; while (($longbits+$latbits)%5 != 0) { $longbits+=$addlong; $latbits+=!$addlong; $addlong=!$addlong; } //encode each as binary string $blat=$this->binEncode($lat,-90,90, $latbits); $blong=$this->binEncode($long,-180,180,$longbits); //merge lat and long together $binary=""; $uselong=1; while (strlen($blat)+strlen($blong)) { if ($uselong) { $binary=$binary.substr($blong,0,1); $blong=substr($blong,1); } else { $binary=$binary.substr($blat,0,1); $blat=substr($blat,1); } $uselong=!$uselong; } //convert binary string to hash $hash=""; for ($i=0; $i<strlen($binary); $i+=5) { $n=bindec(substr($binary,$i,5)); $hash=$hash.$this->coding[$n]; } return $hash; } /** * What's the maximum error for $bits bits covering a range $min to $max */ private function calcError($bits,$min,$max) { $err=($max-$min)/2; while ($bits--) $err/=2; return $err; } /* * returns precision of number * precision of 42 is 0.5 * precision of 42.4 is 0.05 * precision of 42.41 is 0.005 etc */ private function precision($number) { $precision=0; $pt=strpos($number,'.'); if ($pt!==false) { $precision=-(strlen($number)-$pt-1); } return pow(10,$precision)/2; } /** * create binary encoding of number as detailed in http://en.wikipedia.org/wiki/Geohash#Example * removing the tail recursion is left an exercise for the reader */ private function binEncode($number, $min, $max, $bitcount) { if ($bitcount==0) return ""; #echo "$bitcount: $min $max<br>"; //this is our mid point - we will produce a bit to say //whether $number is above or below this mid point $mid=($min+$max)/2; if ($number>$mid) return "1".$this->binEncode($number, $mid, $max,$bitcount-1); else return "0".$this->binEncode($number, $min, $mid,$bitcount-1); } /** * decodes binary encoding of number as detailed in http://en.wikipedia.org/wiki/Geohash#Example * removing the tail recursion is left an exercise for the reader */ private function binDecode($binary, $min, $max) { $mid=($min+$max)/2; if (strlen($binary)==0) return $mid; $bit=substr($binary,0,1); $binary=substr($binary,1); if ($bit==1) return $this->binDecode($binary, $mid, $max); else return $this->binDecode($binary, $min, $mid); } } ?>
View Code import java.io.File; import java.io.FileInputStream; import java.util.BitSet; import java.util.HashMap; public class Geohash { private static int numbits = 6 * 5; final static char[] digits = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'j', 'k', 'm', 'n', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z' }; final static HashMap<Character, Integer> lookup = new HashMap<Character, Integer>(); static { int i = 0; for (char c : digits) lookup.put(c, i++); } public static void main(String[] args) throws Exception{ System.out.println(new Geohash().encode(45, 125)); } public double[] decode(String geohash) { StringBuilder buffer = new StringBuilder(); for (char c : geohash.toCharArray()) { int i = lookup.get(c) + 32; buffer.append( Integer.toString(i, 2).substring(1) ); } BitSet lonset = new BitSet(); BitSet latset = new BitSet(); //even bits int j =0; for (int i=0; i< numbits*2;i+=2) { boolean isSet = false; if ( i < buffer.length() ) isSet = buffer.charAt(i) == '1'; lonset.set(j++, isSet); } //odd bits j=0; for (int i=1; i< numbits*2;i+=2) { boolean isSet = false; if ( i < buffer.length() ) isSet = buffer.charAt(i) == '1'; latset.set(j++, isSet); } double lon = decode(lonset, -180, 180); double lat = decode(latset, -90, 90); return new double[] {lat, lon}; } private double decode(BitSet bs, double floor, double ceiling) { double mid = 0; for (int i=0; i<bs.length(); i++) { mid = (floor + ceiling) / 2; if (bs.get(i)) floor = mid; else ceiling = mid; } return mid; } public String encode(double lat, double lon) { BitSet latbits = getBits(lat, -90, 90); BitSet lonbits = getBits(lon, -180, 180); StringBuilder buffer = new StringBuilder(); for (int i = 0; i < numbits; i++) { buffer.append( (lonbits.get(i))?'1':'0'); buffer.append( (latbits.get(i))?'1':'0'); } return base32(Long.parseLong(buffer.toString(), 2)); } private BitSet getBits(double lat, double floor, double ceiling) { BitSet buffer = new BitSet(numbits); for (int i = 0; i < numbits; i++) { double mid = (floor + ceiling) / 2; if (lat >= mid) { buffer.set(i); floor = mid; } else { ceiling = mid; } } return buffer; } public static String base32(long i) { char[] buf = new char[65]; int charPos = 64; boolean negative = (i < 0); if (!negative) i = -i; while (i <= -32) { buf[charPos--] = digits[(int) (-(i % 32))]; i /= 32; } buf[charPos] = digits[(int) (-i)]; if (negative) buf[--charPos] = '-'; return new String(buf, charPos, (65 - charPos)); } }
引用阿里云以为技术专家的博客上的讨论:
常见的一些应用场景
A、如果想查询附近的点?如何操作
查出改点的gehash值,然后到数据库里面进行前缀匹配就可以了。
B、如果想查询附近点,特定范围内,例如一个点周围500米的点,如何搞?
可以查询结果,在结果中进行赛选,将geohash进行解码为经纬度,然后进行比较
*在纬度相等的情况下:
*经度每隔0.00001度,距离相差约1米;
*每隔0.0001度,距离相差约10米;
*每隔0.001度,距离相差约100米;
*每隔0.01度,距离相差约1000米;
*每隔0.1度,距离相差约10000米。
*在经度相等的情况下:
*纬度每隔0.00001度,距离相差约1.1米;
*每隔0.0001度,距离相差约11米;
*每隔0.001度,距离相差约111米;
*每隔0.01度,距离相差约1113米;
*每隔0.1度,距离相差约11132米。
参考资料:
http://iamzhongyong.iteye.com/blog/1399333
http://tech.idv2.com/2011/06/17/location-search/
http://blog.sina.com.cn/s/blog_62ba0fdd0100tul4.html