- ACL 2024 | 美团技术团队精选论文解读
美团算法人工智能
本文精选了美团技术团队被ACL2024收录的4篇论文进行解读,论文内容覆盖了训练成本优化、投机解码、代码生成优化、指令微调(IFT)等技术领域。这些论文是美团技术团队跟高校、科研机构合作的成果。希望能给从事相关研究工作的同学带来一些帮助或启发。ACL是计算语言学和自然语言处理领域最重要的顶级国际会议,由国际计算语言学协会组织,每年举办一次。据谷歌学术计算语言学刊物指标显示,ACL影响力位列第一,是
- 10 个免费的 AI 图片生成工具分享
程序员
原文:https://openaigptguide.com/ai-picture-generator/在人工智能(AI)图像生成技术的推动下,各类AI图片生成网站如雨后春笋般涌现,为我们的日常生活提供了丰富多彩的视觉体验。AI图片生成技术原理人工智能(AI)图片生成技术原理是通过计算机程序使用深度学习算法从大量的数据中学习特征,并根据特征创建新的图片。该技术可以模拟人类的绘画过程,学习输入图像的潜
- 假新闻检测论文(24)A comprehensive survey of multimodal fake news detection techniques...
weixin_41964296
假新闻检测自然语言处理
本文综述了利用深度学习架构和注意力机制进行假新闻检测的最新和全面的研究一介绍假新闻定义:虚假或误导性新闻,或“假新闻”,是任何捏造或故意欺骗的媒体内容。假新闻危害:它可以被利用来操纵公众情绪,传播错误信息,甚至干预政治选举。它的主要目的是扭曲、欺骗或操纵个人的信仰和观点。假新闻的形式(类型):虚假信息在媒体上传播的形式多种多样,包括讽刺、谣言、点击诱饵、错误信息等。讽刺作品通常充满幽默,用来强调特
- YOLOv8重磅升级:引入DenseOne密集网络革新主干设计,重塑YOLO目标检测性能新高度
程序员杨弋
YOLO目标检测人工智能
随着深度学习技术的不断进步,目标检测作为计算机视觉领域的重要任务之一,其性能和应用范围也在不断扩大。作为目标检测领域的佼佼者,YOLO(YouOnlyLookOnce)系列算法以其出色的性能和实时性受到了广泛关注。而最近提出的YOLOv8更是在前代版本的基础上进行了多项优化,进一步提升了检测精度和速度。然而,尽管YOLOv8已经取得了显著的进步,但在处理复杂场景和遮挡问题时,仍然存在一定的挑战。为
- 深度学习驱动的极端天气预测:时空数据异常检测与应用全解析(基于Python + TensorFlow)
AI_DL_CODE
深度学习pythontensorflow人工智能天气预测
摘要:时空数据异常检测在气象领域识别偏离正常模式的数据点,对极端天气预测至关重要。深度学习,尤其是LSTM网络,因其强大的特征学习能力在该领域显示出巨大潜力。通过整合多源气象数据,深度学习模型能够自动挖掘复杂模式和非线性关系,提高预测准确性。然而,挑战依然存在,包括数据质量问题、模型可解释性不足以及极端天气的内在复杂性和不确定性。未来,通过模型架构创新、训练算法优化以及探索深度学习在气候预测、气象
- 【YOLOv8改进- Backbone主干】YOLOv8更换主干网络之ConvNexts,纯卷积神经网络,更快更准,,降低参数量!
YOLO大师
YOLO网络cnn目标检测论文阅读yolov8
YOLOv8目标检测创新改进与实战案例专栏专栏目录:YOLOv8有效改进系列及项目实战目录包含卷积,主干注意力,检测头等创新机制以及各种目标检测分割项目实战案例专栏链接:YOLOv8基础解析+创新改进+实战案例介绍摘要视觉识别的“咆哮20年代”开始于视觉Transformer(ViTs)的引入,ViTs迅速取代了卷积神经网络(ConvNets)成为最先进的图像分类模型。然而,普通的ViT在应用于诸
- 基于深度学习的人脸表情识别系统:YOLOv5 + YOLOv8 + YOLOv10 + UI界面 + 数据集
2025年数学建模美赛
深度学习YOLOui分类人工智能
引言随着人工智能的飞速发展,深度学习技术已广泛应用于各个领域,尤其是在计算机视觉领域。人脸识别和表情识别是其中的一个重要应用,能够在多种场景下提供重要的信息,例如安全监控、情感分析、智能客服、健康监测等。在人脸表情识别任务中,准确识别人脸的情感状态(如高兴、愤怒、悲伤等)是一个极具挑战性的任务。随着YOLO系列算法的不断进步,YOLOv5、YOLOv8和YOLOv10的推出大大提高了目标检测的精度
- 基于YOLOv8深度学习的人脸年龄检测识别系统
2025年数学建模美赛
YOLO深度学习人工智能ui数据挖掘分类
引言随着人工智能和计算机视觉的飞速发展,人脸分析技术在年龄检测领域取得了显著进展。人脸年龄检测系统在安全监控、广告推荐、健康监测等领域有广泛应用。本文将基于YOLOv8目标检测模型和UI界面,开发一个完整的人脸年龄检测识别系统。我们将详细介绍项目的技术实现、数据集构建、模型训练以及UI设计,并附上完整代码。目录引言系统架构设计数据准备公开人脸年龄数据集数据标注格式数据目录结构模型训练YOLOv8环
- 基于深度学习的人脸表情识别系统(YOLOv10+UI界面+数据集)
2025年数学建模美赛
深度学习YOLOui计算机视觉人工智能目标跟踪
在本篇博客中,我们将详细介绍如何构建一个基于深度学习的人脸表情识别系统。该系统主要由三部分组成:YOLOv10(深度学习模型)进行表情识别、UI界面展示识别结果以及数据集的准备和训练过程。我们将从系统架构、数据准备、模型训练、UI设计等多个方面进行全面讲解,最终实现一个能够实时识别并展示人脸表情的系统。目录1.系统架构2.数据集准备2.1FER2013数据集2.2数据预处理3.YOLOv10模型概
- 基于深度学习的人脸表情识别系统:YOLOv8 + UI界面 + 数据集完整实现
2025年数学建模美赛
深度学习YOLOui人工智能代码
1.引言近年来,人脸表情识别在情感计算、智能人机交互、心理学研究等领域有着广泛的应用。深度学习的快速发展,使得高效、准确的人脸表情识别成为可能。通过利用卷积神经网络(CNN)和目标检测技术,可以实现实时、精准的人脸表情识别。本文将基于YOLOv8构建一个完整的人脸表情识别系统。系统集成了数据集准备、YOLOv8模型训练、实时推理以及基于PyQt5的图形用户界面(UI)。通过本文,你将学习如何实现一
- 《解锁鸿蒙系统AI与第三方应用集成的无限可能》
人工智能深度学习
在当今科技飞速发展的时代,鸿蒙系统与人工智能技术的深度融合为应用开发带来了前所未有的机遇和挑战。如何让鸿蒙系统中的人工智能服务与第三方应用实现更好的集成,成为了开发者们关注的焦点。利用鸿蒙系统内置的人工智能服务鸿蒙系统提供了丰富的人工智能服务,如语音助手、视觉识别、自然语言处理等。开发者可以直接调用这些服务,无需从头开始研发。例如,在开发一款阅读类应用时,可以调用自然语言处理服务实现智能朗读功能,
- AI大模型应用架构(ALLMA)白皮书解读
百度_开发者中心
人工智能大模型数据库自然语言处理
随着人工智能技术的不断发展,AI大模型成为推动生产、生活方式变革,助推产业智能化转型升级,驱动数字经济高质量发展等社会经济发展方面的新引擎。为了全面展示AI大模型的发展全貌,为各界提供新思路,本文将对AI大模型应用架构(ALLMA)白皮书进行解读。一、AI大模型应用架构(ALLMA)的内涵AI大模型应用架构(ALLMA)是一种基于深度学习的人工智能应用架构,旨在通过大规模无标注数据预训练、指令微调
- Web APP 阶段性综述
预测模型的开发与应用研究
APPconstructionwebapp
WebAPP阶段性综述当前,WebAPP主要应用于电脑端,常被用于部署数据分析、机器学习及深度学习等高算力需求的任务。在医学与生物信息学领域,WebAPP扮演着重要角色。在生物信息学领域,诸多工具以WebAPP的形式呈现,相较之下,医学领域的此类应用数量相对较少。在医学和生物信息学的学术论文中,WebAPP是展示研究成果的有效工具,并且还能部署到网络上,服务于实际应用场景。ShinyAPP平台特性
- Time-LLM :超越了现有时间序列预测模型的学习器
福安德信息科技
AI预测大模型学习人工智能python大模型时序预测
AI预测相关目录AI预测流程,包括ETL、算法策略、算法模型、模型评估、可视化等相关内容最好有基础的python算法预测经验EEMD策略及踩坑VMD-CNN-LSTM时序预测对双向LSTM等模型添加自注意力机制K折叠交叉验证optuna超参数优化框架多任务学习-模型融合策略Transformer模型及Paddle实现迁移学习在预测任务上的tensoflow2.0实现holt提取时序序列特征TCN时
- 气象海洋水文领域Python机器学习及深度学习实践应用能力提升
AAIshangyanxiu
农林生态遥感编程算法统计语言大气科学python机器学习深度学习
Python是功能强大、免费、开源,实现面向对象的编程语言,能够在不同操作系统和平台使用,简洁的语法和解释性语言使其成为理想的脚本语言。除了标准库,还有丰富的第三方库,Python在数据处理、科学计算、数学建模、数据挖掘和数据可视化方面具备优异的性能。上述优势使得Python在气象、海洋、地理、气候、水文和生态等地学领域的科研和工程项目中得到广泛应用。可以预见未来Python将成为气象、海洋和水文
- ChatGPT 网络配置问题解决方案
IPdodo全球网络服务
chatgpt网络
随着人工智能技术的飞速发展,基于GPT架构的聊天机器人,如ChatGPT,已经在多个领域获得了广泛应用。其强大的自然语言处理能力为用户带来了便捷的交互体验。然而,在实际使用过程中,尤其是在部署和访问时,用户可能会遇到网络配置方面的一些问题,这些问题往往会影响ChatGPT的响应速度、稳定性甚至是可用性。一、ChatGPT网络配置问题的常见原因1.网络连接不稳定网络连接的稳定性是影响ChatGPT使
- 【昇思25天学习打卡营打卡指南-第一天】基本介绍与快速入门
JeffDingAI
MindSpore学习
昇思MindSpore介绍昇思MindSpore是一个全场景深度学习框架,旨在实现易开发、高效执行、全场景统一部署三大目标。其中,易开发表现为API友好、调试难度低;高效执行包括计算效率、数据预处理效率和分布式训练效率;全场景则指框架同时支持云、边缘以及端侧场景。昇思MindSpore总体架构如下图所示:ModelZoo(模型库):ModelZoo提供可用的深度学习算法网络,也欢迎更多开发者贡献新
- NLP-语义解析(Text2SQL):技术路线【Seq2Seq、模板槽位填充、中间表达、强化学习、图网络】
u013250861
#自然语言处理人工智能
目前关于NL2SQL技术路线的发展主要包含以下几种:Seq2Seq方法:在深度学习的研究背景下,很多研究人员将Text-to-SQL看作一个类似神经机器翻译的任务,主要采取Seq2Seq的模型框架。基线模型Seq2Seq在加入Attention、Copying等机制后,能够在ATIS、GeoQuery数据集上达到84%的精确匹配,但是在WikiSQL数据集上只能达到23.3%的精确匹配,37.0%
- PyTorch 中的 expand 操作详解:用法、原理与技巧
专业发呆业余科研
深度模型底层原理pytorch人工智能python深度学习机器学习
在使用PyTorch进行深度学习时,张量形状与广播机制常常是让初学者感到困惑的地方。我们需要时常面对多维张量,并在批量、通道、空间位置等多个维度之间做运算。如果能熟练掌握各种维度变换操作——包括unsqueeze、expand、view/reshape、transpose/permute等,可以帮助我们灵活地操纵张量,写出高效而简洁的矩阵化(vectorized)代码。本文将重点聚焦于expand
- 注意力池化层:从概念到实现及应用
专业发呆业余科研
深度模型底层原理python人工智能transformer深度学习自然语言处理图像处理
引言在现代深度学习模型中,注意力机制已经成为一个不可或缺的组件,特别是在处理自然语言和视觉数据时。多头注意力机制(MultiheadAttention)是Transformer模型的核心,它通过多个注意力头来捕捉序列中不同部分之间的关系。然而,在多模态模型中,如何有效地将图像特征和文本特征结合起来一直是一个挑战。注意力池化层(AttentionPoolingLayer)提供了一种有效的解决方案,通
- 深入解析昇腾AI CPU算子开发:基于AI CPU引擎的自定义算子实现与优化
快撑死的鱼
华为昇腾AscendC的算子开发系统学习人工智能
深入解析昇腾AICPU算子开发:基于AICPU引擎的自定义算子实现与优化随着深度学习模型复杂性的不断提升,AI处理器需要更强大的算力和更高效的计算架构来支撑模型的训练和推理。在华为昇腾AI处理器的架构中,AICPU承担着重要的计算任务,特别是针对标量和向量等通用计算的支持。AICPU算子开发成为开发者优化模型性能的重要步骤,而TBE(TensorBoostEngine)工具也为开发者提供了便捷的算
- 【AI系统】混合并行
ZOMI酱
人工智能
混合并行混合并行(HybridParallel)是一种用于分布式计算的高级策略,它结合了数据并行和模型并行的优势,以更高效地利用计算资源,解决深度学习中的大模型训练问题。混合并行不仅能提高计算效率,还能在有限的硬件资源下处理更大的模型和数据集。在深度学习中,数据并行和模型并行各自有其适用的场景和局限性。数据并行适用于训练样本较多而模型较小的情况,通过将数据集分割成多个子集并在不同的设备上同时训练来
- BladeDISC++:Dynamic Shape AI 编译器下的显存优化技术
人工智能机器学习分布式阿里云
近年来,随着深度学习技术的迅猛发展,越来越多的模型展现出动态特性,这引发了对动态形状深度学习编译器(DynamicShapeAICompiler)的广泛关注。本文将介绍阿里云PAI团队近期发布的BladeDISC++项目,探讨在动态场景下如何优化深度学习训练任务的显存峰值,主要内容包括以下三个部分:DynamicShape场景下显存优化的背景与挑战BladeDISC++的创新解决方案Llama2模
- 【TVM 教程】为 x86 CPU 自动调优卷积网络
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:YaoWang,EddieYan本文介绍如何为x86CPU调优卷积神经网络。注意,本教程不会在Windows或最新版本的macOS上运行。如需运行,请将本教程的主体放在ifname=="__main__":代码块中。importosi
- 交叉熵损失与二元交叉熵损失:区别、联系及实现细节
专业发呆业余科研
深度模型底层原理人工智能深度学习python
在机器学习和深度学习中,交叉熵损失(Cross-EntropyLoss)和二元交叉熵损失(BinaryCross-EntropyLoss)是两种常用的损失函数,它们在分类任务中发挥着重要作用。本文将详细介绍这两种损失函数的区别和联系,并通过具体的代码示例来说明它们的实现细节。交叉熵损失(Cross-EntropyLoss)常用于多类分类问题,即每个样本只能属于一个类别,但总类别数量较多。例如,在手
- 深度学习YOLOv3压双黄线期末项目
yzx991013
giitYOLO
一、引言实现功能目录一、引言实现功能打开视频连续检测车辆能检测到道路中间的双黄线能检测出车辆是否压双黄线当车辆压到双黄线时给出提示要求使用多线程实现功能二、技术栈概览三、代码功能深度剖析视频文件选择功能(choosevideo函数)四、项目亮点提炼五、总结与展望1.打开视频2.连续检测车辆3.能检测到道路中间的双黄线4.能检测出车辆是否压双黄线5.当车辆压到双黄线时给出提示6.要求使用多线程实现功
- 深度定制:Embedding与Reranker模型的微调艺术
从零开始学习人工智能
embedding人工智能
微调是深度学习中的一种常见做法,它允许模型在预训练的基础上进一步学习特定任务的特定特征。对于Embedding模型,微调的目的是让模型更适配特定的数据集,从而取得更好的召回效果。这通常涉及到使用特定的数据集对模型进行额外的训练,以便模型能够学习到数据集中的特定语义关系。微调过程可以使用不同的库和框架来实现,例如sentence-transformers库,它提供了便捷的API来调整Embeddin
- 3D卷积神经网络:原理、应用与深入解析
从零开始学习人工智能
cnn人工智能神经网络目标跟踪3dopencv
3D卷积原理3D卷积,或称为三维卷积,是卷积神经网络(CNN)中的一种技术,用于处理三维数据,如医学图像(如MRI、CT扫描)或视频数据。与标准的二维卷积(处理图像)不同,3D卷积在三个维度(通常是深度、高度和宽度)上操作。在这个图示中,我们可以看到一个3x3x3的卷积核(也称为滤波器或特征检测器)在一个5x5x5的输入数据块上滑动。在每个位置,卷积核与其覆盖的输入数据块的部分进行元素乘法并求和,
- 【机器学习】—时序数据分析:机器学习与深度学习在预测、金融、气象等领域的应用
云边有个稻草人
热门文章机器学习数据分析深度学习笔记
云边有个稻草人-CSDN博客目录引言1.时序数据分析基础1.1时序数据的特点1.2时序数据分析的常见方法2.深度学习与时序数据分析2.1深度学习在时序数据分析中的应用2.1.1LSTM(长短期记忆网络)2.2深度学习在金融市场预测中的应用2.2.1股票市场预测2.3深度学习在设备故障检测中的应用3.强化学习与时序数据分析3.1强化学习的基本概念3.2强化学习在金融市场中的应用3.3强化学习在设备故
- 使用 AI 在医疗影像分析中的应用探索
摘要医疗影像分析是AI在医疗领域的重要应用方向,能够提高诊断效率,减少误诊率。本文将深入探讨AI技术在医疗影像数据分析中的应用,包括核心算法、关键实现步骤和实际案例,并提供一个基于卷积神经网络(CNN)的图像分类Demo。引言随着医疗影像数据的爆炸式增长,传统的人工分析已无法满足高效、精准诊断的需求。AI技术通过深度学习算法,在医疗影像的识别、分类和标注中发挥了重要作用。本文章将结合技术实现与案例
- LeetCode[位运算] - #137 Single Number II
Cwind
javaAlgorithmLeetCode题解位运算
原题链接:#137 Single Number II
要求:
给定一个整型数组,其中除了一个元素之外,每个元素都出现三次。找出这个元素
注意:算法的时间复杂度应为O(n),最好不使用额外的内存空间
难度:中等
分析:
与#136类似,都是考察位运算。不过出现两次的可以使用异或运算的特性 n XOR n = 0, n XOR 0 = n,即某一
- 《JavaScript语言精粹》笔记
aijuans
JavaScript
0、JavaScript的简单数据类型包括数字、字符创、布尔值(true/false)、null和undefined值,其它值都是对象。
1、JavaScript只有一个数字类型,它在内部被表示为64位的浮点数。没有分离出整数,所以1和1.0的值相同。
2、NaN是一个数值,表示一个不能产生正常结果的运算结果。NaN不等于任何值,包括它本身。可以用函数isNaN(number)检测NaN,但是
- 你应该更新的Java知识之常用程序库
Kai_Ge
java
在很多人眼中,Java 已经是一门垂垂老矣的语言,但并不妨碍 Java 世界依然在前进。如果你曾离开 Java,云游于其它世界,或是每日只在遗留代码中挣扎,或许是时候抬起头,看看老 Java 中的新东西。
Guava
Guava[gwɑ:və],一句话,只要你做Java项目,就应该用Guava(Github)。
guava 是 Google 出品的一套 Java 核心库,在我看来,它甚至应该
- HttpClient
120153216
httpclient
/**
* 可以传对象的请求转发,对象已流形式放入HTTP中
*/
public static Object doPost(Map<String,Object> parmMap,String url)
{
Object object = null;
HttpClient hc = new HttpClient();
String fullURL
- Django model字段类型清单
2002wmj
django
Django 通过 models 实现数据库的创建、修改、删除等操作,本文为模型中一般常用的类型的清单,便于查询和使用: AutoField:一个自动递增的整型字段,添加记录时它会自动增长。你通常不需要直接使用这个字段;如果你不指定主键的话,系统会自动添加一个主键字段到你的model。(参阅自动主键字段) BooleanField:布尔字段,管理工具里会自动将其描述为checkbox。 Cha
- 在SQLSERVER中查找消耗CPU最多的SQL
357029540
SQL Server
返回消耗CPU数目最多的10条语句
SELECT TOP 10
total_worker_time/execution_count AS avg_cpu_cost, plan_handle,
execution_count,
(SELECT SUBSTRING(text, statement_start_of
- Myeclipse项目无法部署,Undefined exploded archive location
7454103
eclipseMyEclipse
做个备忘!
错误信息为:
Undefined exploded archive location
原因:
在工程转移过程中,导致工程的配置文件出错;
解决方法:
 
- GMT时间格式转换
adminjun
GMT时间转换
普通的时间转换问题我这里就不再罗嗦了,我想大家应该都会那种低级的转换问题吧,现在我向大家总结一下如何转换GMT时间格式,这种格式的转换方法网上还不是很多,所以有必要总结一下,也算给有需要的朋友一个小小的帮助啦。
1、可以使用
SimpleDateFormat SimpleDateFormat
EEE-三位星期
d-天
MMM-月
yyyy-四位年
- Oracle数据库新装连接串问题
aijuans
oracle数据库
割接新装了数据库,客户端登陆无问题,apache/cgi-bin程序有问题,sqlnet.log日志如下:
Fatal NI connect error 12170.
VERSION INFORMATION: TNS for Linux: Version 10.2.0.4.0 - Product
- 回顾java数组复制
ayaoxinchao
java数组
在写这篇文章之前,也看了一些别人写的,基本上都是大同小异。文章是对java数组复制基础知识的回顾,算是作为学习笔记,供以后自己翻阅。首先,简单想一下这个问题:为什么要复制数组?我的个人理解:在我们在利用一个数组时,在每一次使用,我们都希望它的值是初始值。这时我们就要对数组进行复制,以达到原始数组值的安全性。java数组复制大致分为3种方式:①for循环方式 ②clone方式 ③arrayCopy方
- java web会话监听并使用spring注入
bewithme
Java Web
在java web应用中,当你想在建立会话或移除会话时,让系统做某些事情,比如说,统计在线用户,每当有用户登录时,或退出时,那么可以用下面这个监听器来监听。
import java.util.ArrayList;
import java.ut
- NoSQL数据库之Redis数据库管理(Redis的常用命令及高级应用)
bijian1013
redis数据库NoSQL
一 .Redis常用命令
Redis提供了丰富的命令对数据库和各种数据库类型进行操作,这些命令可以在Linux终端使用。
a.键值相关命令
b.服务器相关命令
1.键值相关命令
&
- java枚举序列化问题
bingyingao
java枚举序列化
对象在网络中传输离不开序列化和反序列化。而如果序列化的对象中有枚举值就要特别注意一些发布兼容问题:
1.加一个枚举值
新机器代码读分布式缓存中老对象,没有问题,不会抛异常。
老机器代码读分布式缓存中新对像,反序列化会中断,所以在所有机器发布完成之前要避免出现新对象,或者提前让老机器拥有新增枚举的jar。
2.删一个枚举值
新机器代码读分布式缓存中老对象,反序列
- 【Spark七十八】Spark Kyro序列化
bit1129
spark
当使用SparkContext的saveAsObjectFile方法将对象序列化到文件,以及通过objectFile方法将对象从文件反序列出来的时候,Spark默认使用Java的序列化以及反序列化机制,通常情况下,这种序列化机制是很低效的,Spark支持使用Kyro作为对象的序列化和反序列化机制,序列化的速度比java更快,但是使用Kyro时要注意,Kyro目前还是有些bug。
Spark
- Hybridizing OO and Functional Design
bookjovi
erlanghaskell
推荐博文:
Tell Above, and Ask Below - Hybridizing OO and Functional Design
文章中把OO和FP讲的深入透彻,里面把smalltalk和haskell作为典型的两种编程范式代表语言,此点本人极为同意,smalltalk可以说是最能体现OO设计的面向对象语言,smalltalk的作者Alan kay也是OO的最早先驱,
- Java-Collections Framework学习与总结-HashMap
BrokenDreams
Collections
开发中常常会用到这样一种数据结构,根据一个关键字,找到所需的信息。这个过程有点像查字典,拿到一个key,去字典表中查找对应的value。Java1.0版本提供了这样的类java.util.Dictionary(抽象类),基本上支持字典表的操作。后来引入了Map接口,更好的描述的这种数据结构。
&nb
- 读《研磨设计模式》-代码笔记-职责链模式-Chain Of Responsibility
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 业务逻辑:项目经理只能处理500以下的费用申请,部门经理是1000,总经理不设限。简单起见,只同意“Tom”的申请
* bylijinnan
*/
abstract class Handler {
/*
- Android中启动外部程序
cherishLC
android
1、启动外部程序
引用自:
http://blog.csdn.net/linxcool/article/details/7692374
//方法一
Intent intent=new Intent();
//包名 包名+类名(全路径)
intent.setClassName("com.linxcool", "com.linxcool.PlaneActi
- summary_keep_rate
coollyj
SUM
BEGIN
/*DECLARE minDate varchar(20) ;
DECLARE maxDate varchar(20) ;*/
DECLARE stkDate varchar(20) ;
DECLARE done int default -1;
/* 游标中 注册服务器地址 */
DE
- hadoop hdfs 添加数据目录出错
daizj
hadoophdfs扩容
由于原来配置的hadoop data目录快要用满了,故准备修改配置文件增加数据目录,以便扩容,但由于疏忽,把core-site.xml, hdfs-site.xml配置文件dfs.datanode.data.dir 配置项增加了配置目录,但未创建实际目录,重启datanode服务时,报如下错误:
2014-11-18 08:51:39,128 WARN org.apache.hadoop.h
- grep 目录级联查找
dongwei_6688
grep
在Mac或者Linux下使用grep进行文件内容查找时,如果给定的目标搜索路径是当前目录,那么它默认只搜索当前目录下的文件,而不会搜索其下面子目录中的文件内容,如果想级联搜索下级目录,需要使用一个“-r”参数:
grep -n -r "GET" .
上面的命令将会找出当前目录“.”及当前目录中所有下级目录
- yii 修改模块使用的布局文件
dcj3sjt126com
yiilayouts
方法一:yii模块默认使用系统当前的主题布局文件,如果在主配置文件中配置了主题比如: 'theme'=>'mythm', 那么yii的模块就使用 protected/themes/mythm/views/layouts 下的布局文件; 如果未配置主题,那么 yii的模块就使用 protected/views/layouts 下的布局文件, 总之默认不是使用自身目录 pr
- 设计模式之单例模式
come_for_dream
设计模式单例模式懒汉式饿汉式双重检验锁失败无序写入
今天该来的面试还没来,这个店估计不会来电话了,安静下来写写博客也不错,没事翻了翻小易哥的博客甚至与大牛们之间的差距,基础知识不扎实建起来的楼再高也只能是危楼罢了,陈下心回归基础把以前学过的东西总结一下。
*********************************
- 8、数组
豆豆咖啡
二维数组数组一维数组
一、概念
数组是同一种类型数据的集合。其实数组就是一个容器。
二、好处
可以自动给数组中的元素从0开始编号,方便操作这些元素
三、格式
//一维数组
1,元素类型[] 变量名 = new 元素类型[元素的个数]
int[] arr =
- Decode Ways
hcx2013
decode
A message containing letters from A-Z is being encoded to numbers using the following mapping:
'A' -> 1
'B' -> 2
...
'Z' -> 26
Given an encoded message containing digits, det
- Spring4.1新特性——异步调度和事件机制的异常处理
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- squid3(高命中率)缓存服务器配置
liyonghui160com
系统:centos 5.x
需要的软件:squid-3.0.STABLE25.tar.gz
1.下载squid
wget http://www.squid-cache.org/Versions/v3/3.0/squid-3.0.STABLE25.tar.gz
tar zxf squid-3.0.STABLE25.tar.gz &&
- 避免Java应用中NullPointerException的技巧和最佳实践
pda158
java
1) 从已知的String对象中调用equals()和equalsIgnoreCase()方法,而非未知对象。 总是从已知的非空String对象中调用equals()方法。因为equals()方法是对称的,调用a.equals(b)和调用b.equals(a)是完全相同的,这也是为什么程序员对于对象a和b这么不上心。如果调用者是空指针,这种调用可能导致一个空指针异常
Object unk
- 如何在Swift语言中创建http请求
shoothao
httpswift
概述:本文通过实例从同步和异步两种方式上回答了”如何在Swift语言中创建http请求“的问题。
如果你对Objective-C比较了解的话,对于如何创建http请求你一定驾轻就熟了,而新语言Swift与其相比只有语法上的区别。但是,对才接触到这个崭新平台的初学者来说,他们仍然想知道“如何在Swift语言中创建http请求?”。
在这里,我将作出一些建议来回答上述问题。常见的
- Spring事务的传播方式
uule
spring事务
传播方式:
新建事务
required
required_new - 挂起当前
非事务方式运行
supports
&nbs